1
|
Zhai K, Zhang Y, Zhao C, Wang Q, Gao X. Conservation and Dynamics of Maize Seed Endophytic Bacteria Across Progeny Transmission. Microorganisms 2024; 12:2399. [PMID: 39770602 PMCID: PMC11676384 DOI: 10.3390/microorganisms12122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Maize (Zea mays L.) is an important cereal crop species for food, feedstock and industrial material. Maize seeds host a suitable ecosystem for endophytic bacteria, facilitating seed germination and seedling growth. However, the inheritance, diversity and potential function of seed endophytic bacteria in maize remain largely unexplored. In this study, the endophytic bacteria in the seeds of maize inbred line WU109 collected during three consecutive seasons were identified using 16S rDNA sequencing. Core community composition was essentially consistent across three seed generations and two planting locations. In total, 212 operational taxonomic units (OTUs) belonging to 11 phyla were identified, among which proteobacteria was the dominant phylum. Fifty-six OTUs were conserved across three seed generations. Within them, 16 OTUs were core components and the dominant OTUs were Ralstonia solanacearum, Delftia tsuruhatensis, Bacillu svelezensis and Shigella boydii, accounting for 60% of the total abundance of OTUs. COG and KEGG analyses showed that the function of seed endophytic bacteria was mainly enriched in metabolic processes, especially in amino acid, carbohydrate and energy metabolism. Taken together, the results suggested that the community of maize seed endophytic bacteria was likely co-shaped by both genetic determination and the environment, while the core constitutes of seed endophytes were largely conserved due to transgenerational transmission. Establishing the mutualistic link between the maize seed and its endophytic bacteria enables the exploitation of the potential of endophytes for enhancing crop production. This finding provides a reference to better understand the inheritance and composition of seed core endophytic bacteria in maize.
Collapse
Affiliation(s)
- Kaihui Zhai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (Y.Z.); (C.Z.); (Q.W.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (Y.Z.); (C.Z.); (Q.W.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (Y.Z.); (C.Z.); (Q.W.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (Y.Z.); (C.Z.); (Q.W.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (K.Z.); (Y.Z.); (C.Z.); (Q.W.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Pal G, Saxena S, Kumar K, Verma A, Kumar D, Shukla P, Pandey A, White J, Verma SK. Seed endophytic bacterium Lysinibacillus sp. (ZM1) from maize (Zea mays L.) shapes its root architecture through modulation of auxin biosynthesis and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108731. [PMID: 38761545 DOI: 10.1016/j.plaphy.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Seed endophytic bacteria have been shown to promote the growth and development of numerous plants. However, the underlying mechanism still needs to be better understood. The present study aims to investigate the role of a seed endophytic bacterium Lysinibacillus sp. (ZM1) in promoting plant growth and shaping the root architecture of maize seedlings. The study explores how bacteria-mediated auxin biosynthesis and nitrogen metabolism affect plant growth promotion and shape the root architecture of maize seedlings. The results demonstrate that ZM1 inoculation significantly enhances root length, root biomass, and the number of seminal roots in maize seedlings. Additionally, the treated seedlings exhibit increased shoot biomass and higher levels of photosynthetic pigments. Confocal laser scanning microscopy (CLSM) analysis revealed extensive colonization of ZM1 on root hairs, as well as in the cortical and stellar regions of the root. Furthermore, LC-MS analysis demonstrated elevated auxin content in the roots of the ZM1 treated maize seedlings compared to the uninoculated control. Inoculation with ZM1 significantly increased the levels of endogenous ammonium content, GS, and GOGAT enzyme activities in the roots of treated maize seedlings compared to the control, indicating enhanced nitrogen metabolism. Furthermore, inoculation of bacteria under nitrogen-deficient conditions enhanced plant growth, as evidenced by increased root shoot length, fresh and dry weights, average number of seminal roots, and content of photosynthetic pigments. Transcript analysis indicated upregulation of auxin biosynthetic genes, along with genes involved in nitrogen metabolism at different time points in roots of ZM1-treated maize seedlings. Collectively, our findings highlight the positive impact of Lysinibacillus sp. ZM1 inoculation on maize seeds by improving root architecture through modulation of auxin biosynthesis and affecting various nitrogen metabolism related parameters. These findings provide valuable insights into the potential utilization of seed endophytic bacteria as biofertilizers to enhance plant growth and yield in nutrient deficient soils.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 276957612, USA.
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pooja Shukla
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - James White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Davies J, Hawkins S, Winters A, Farrar K. Bacterial endophytic community composition varies by hemp cultivar in commercially sourced seed. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13259. [PMID: 38649235 PMCID: PMC11035101 DOI: 10.1111/1758-2229.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.
Collapse
Affiliation(s)
- Jack Davies
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Ana Winters
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
4
|
Sohaib H, Fays M, Khatib A, Rivière J, El Aouad N, Desoignies N. Contribution to the characterization of the seed endophyte microbiome of Argania spinosa across geographical locations in Central Morocco using metagenomic approaches. Front Microbiol 2024; 15:1310395. [PMID: 38601940 PMCID: PMC11005822 DOI: 10.3389/fmicb.2024.1310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Microbial endophytes are microorganisms that live inside plants, and some of them play important yet understudied roles in plant health, growth, and adaptation to environmental conditions. Their diversity within plants has traditionally been underestimated due to the limitations of culture-dependent techniques. Metagenomic profiling provides a culture-independent approach to characterize entire microbial communities. The argan tree (Argania spinosa) is ecologically and economically important in Morocco, yet its seed endophyte microbiome remains unexplored. This study aimed to compare the bacterial and fungal endophyte communities associated with argan seeds collected from six sites across Morocco using Illumina MiSeq sequencing of the 16S rRNA gene and ITS regions, respectively. Bacterial DNA was extracted from surface-sterilized seeds and amplified using universal primers, while fungal DNA was isolated directly from seeds. Bioinformatics analysis of sequencing data identified taxonomic profiles at the phylum to genus levels. The results indicated that bacterial communities were dominated by the genus Rhodoligotrophos, while fungal communities exhibited varying degrees of dominance between Ascomycota and Basidiomycota depending on site, with Penicillium being the most abundant overall. Distinct site-specific profiles were observed, with Pseudomonas, Bacillus, and Aspergillus present across multiple locations. Alpha diversity indices revealed variation in endophyte richness between seed sources. In conclusion, this first exploration of the argan seed endophyte microbiome demonstrated environmental influence on community structure. While facing limitations due to small sample sizes and lack of ecological metadata, it provides a foundation for future mechanistic investigations into how specific endophyte-host interactions shape argan adaptation across Morocco's diverse landscapes.
Collapse
Affiliation(s)
- Hourfane Sohaib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Morgan Fays
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| | - Abderrezzak Khatib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - John Rivière
- Laboratory of Biotechnology and Applied Biology, Haute Ecole Provinciale de Hainaut-Condorcet, Ath, Hainaut, Belgium
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Nicolas Desoignies
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
- University of Liege - Gembloux Agro-Bio Tech, TERRA - Teaching and Research Center, Plant Sciences Axis, Gembloux, Belgium
| |
Collapse
|
5
|
Sun Z, Adeleke BS, Shi Y, Li C. The seed microbiomes of staple food crops. Microb Biotechnol 2023; 16:2236-2249. [PMID: 37815330 PMCID: PMC10686132 DOI: 10.1111/1751-7915.14352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
The scientific community increasingly recognized that seed microbiomes are important for plant growth and nutrition. The versatile roles and modulating properties that microbiomes hold in the context of seeds seem to be an inherited approach to avert adverse conditions. These discoveries attracted extensive interest, especially in staple food crops (SFCs) where grain was consumed as food. Along with the rapid expansion of population and industrialization that posed a severe challenge to the yield of SFCs, microbiologists and botanists began to explore and engineer seed microbiomes, for safer and more fruitful grain production. To utilize seed microbiomes, we present an overall review of the most updated scientific literature on three representative SFCs (wheat, rice and maize) using the 5W1H (Which, Where, What, Why, When and How) method that provides a comprehensive understanding of the issue. These include which factors determine the composition of seed microbiomes? Where do seed microbiomes come from? What are these seed microbes? Why do these microbes choose seeds as their destination and when do microbes settle down and become seed communists? In addition, how do seed microbiomes work and can be manipulated effectively? Therefore, answering the aforementioned questions regarding SFCs seed microbiomes remain fundamental in bridging endophytic research gaps and harnessing their ecological services.
Collapse
Affiliation(s)
- Zhongke Sun
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Food Laboratory of ZhongyuanLuoheChina
| | - Bartholomew Saanu Adeleke
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
- Department of Biological Sciences, School of ScienceOlusegun Agagu University of Science and TechnologyOkitipupaNigeria
| | - Yini Shi
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| | - Chengwei Li
- School of Biological EngineeringHenan University of TechnologyZhengzhouChina
| |
Collapse
|
6
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
7
|
Wallace JG. Maize seed endophytes. MOLECULAR PLANT PATHOLOGY 2023; 24:801-810. [PMID: 36416063 DOI: 10.1111/mpp.13278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 06/11/2023]
Abstract
Maize is a vital global crop, and each seed (kernel) hosts an ecosystem of microbes living inside it. However, we know very little about these endophytes and what their role is in plant production and physiology. In this Microreview, I summarize the major questions around maize seed endophytes, including what organisms are present, how they get there, whether and how they transmit across generations, and how they and the plant affect each other. Although several studies touch on each of these areas, ultimately there are far more questions than answers. Future priorities for research on maize seed endophytes should include understanding what adaptations allow microbes to be seed endophytes, how the host genetics and the environment affect these communities, and how maize seed endophytes ultimately contribute to the next generation of plants.
Collapse
Affiliation(s)
- Jason G Wallace
- Department of Crop & Soil Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Thiebaut F, Urquiaga MCDO, Rosman AC, da Silva ML, Hemerly AS. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int J Mol Sci 2022; 23:ijms231911301. [PMID: 36232602 PMCID: PMC9569789 DOI: 10.3390/ijms231911301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Agriculture is facing increasing challenges with regard to achieving sustainable growth in productivity without negatively impacting the environment. The use of bioinoculants is emerging as a sustainable solution for agriculture, especially bioinoculants based on diazotrophic bacteria. Brazil is at the forefront of studies intended to identify beneficial diazotrophic bacteria, as well as in the molecular characterization of this association on both the bacterial and plant sides. Here we highlight the main advances in molecular studies to understand the benefits brought to plants by diazotrophic bacteria. Different molecular pathways in plants are regulated both genetically and epigenetically, providing better plant performance. Among them, we discuss the involvement of genes related to nitrogen metabolism, cell wall formation, antioxidant metabolism, and regulation of phytohormones that can coordinate plant responses to environmental factors. Another important aspect in this regard is how the plant recognizes the microorganism as beneficial. A better understanding of plant–bacteria–environment interactions can assist in the future formulation of more efficient bioinoculants, which could in turn contribute to more sustainable agriculture practices.
Collapse
|
9
|
Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189867. [PMID: 34574787 PMCID: PMC8472749 DOI: 10.3390/ijerph18189867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Heavy metal pollution of soil, particularly by mercury (Hg), is a problem that can seriously affect the environment and human health. For this reason, it is necessary to take steps to remediate these environments, prevent potential adverse effects, and restore these areas for subsequent use in agriculture, industry, ranching, and forestry. The present study has selected 40 bacterial strains from rhizosphere and bulk soil that grow naturally in high Hg-contaminated soils from the Almadén mining district in Ciudad Real, Spain. With the objective of evaluating the potential use of these strains in phyto-rhizoremediation, an evaluation and statistical analysis of their PGPR (Plant-Growth-Promoting Rhizobacteria) activity at different levels of Hg was carried out as the first condition of selection for their potential use in bioremediation. In addition, a Hg MBC (Maximum Bactericidal Concentration) was performed with the aim of selecting the strains with high Hg tolerance. Finally, strains with potential biotechnological use have been proposed according to the Bio-Mercury Remediation Suitability Index (BMRSI) criteria, which consider indole-3-acetic acid (IAA) production, acid 1- aminocyclopropane-1-carboxylic deaminase (ACCd) activity, phosphates solubilization, and siderophore production measured in the presence of Hg, as well as its MBC to Hg. The strains selected for further in vivo and in situ processes must reach at least an MBC (Hg) > 100 μg/mL and BMRSI ≥ 6.5.
Collapse
|
10
|
Ercole TG, Savi DC, Adamoski D, Kava VM, Hungria M, Galli-Terasawa LV. Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth. Braz J Microbiol 2021; 52:1807-1823. [PMID: 34458975 DOI: 10.1007/s42770-021-00596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-limiting factors, such as low nutrient availability and weak pathogen resistance, may hinder the production of several crops. Plant growth-promoting bacteria (PGPB) used in agriculture, which stimulate plant growth and development, can serve as a potential tool to mitigate or even circumvent these limitations. The present study evaluated the feasibility of using bacteria isolated from the maize rhizosphere as PGPB for the cultivation of this crop. A total of 282 isolates were collected and clustered into 57 groups based on their genetic similarity using BOX-PCR. A representative isolate from each group was selected and identified at the genus level with 16S rRNA sequencing. The identified genera included Bacillus (61.5% of the isolates), Lysinibacillus (30.52%), Pseudomonas (3.15%), Stenotrophomonas (2.91%), Paenibacillus (1.22%), Enterobacter (0.25%), Rhizobium (0.25%), and Atlantibacter (0.25%). Eleven isolates with the highest performance were selected for analyzing the possible pathways underlying plant growth promotion using biochemical and molecular techniques. Of the selected isolates, 90.9% were positive for indolepyruvate/phenylpyruvate decarboxylase, 54.4% for pyrroloquinoline quinine synthase, 36.4% for nitrogenase reductase, and 27.3% for nitrite reductase. Based on biochemical characterization, 9.1% isolates could fix nitrogen, 36.6% could solubilize phosphate, 54.5% could produce siderophores, and 90.9% could produce indole acetic acid. Enzymatic profiling revealed that the isolates could degrade starch (90.1%), cellulose (72.7%), pectin (81.8%), protein (90.9%), chitin (18.2%), urea (54.5%), and esters (45.4%). Based on the data obtained, we identified three Bacillus spp. (LGMB12, LGMB273, and LGMB426), one Stenotrophomonas sp. (LGMB417), and one Pseudomonas sp. (LGMB456) with the potential to serve as PGPB for maize. Further research is warranted to evaluate the biotechnological potential of these isolates as biofertilizers under field conditions.
Collapse
Affiliation(s)
- Tairine G Ercole
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
| | - Daiani C Savi
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, R. Visconde de Taunay, 427. CEP, Joinville, SC, 89203-005, Brazil
| | - Douglas Adamoski
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Sao Paulo, Brazil
| | - Vanessa M Kava
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil
| | | | - Lygia V Galli-Terasawa
- Department of Genetics, Universidade Federal Do Paraná, Av. Coronel Francisco Heráclito Dos Santos, 210. CEP, Curitiba, PR, 81531-970, Brazil.
| |
Collapse
|
11
|
Nascimento RDC, Cavalcanti MIP, Correia ADJ, Escobar IEC, de Freitas ADS, Nóbrega RSA, Fernandes-Júnior PI. Maize-associated bacteria from the Brazilian semiarid region boost plant growth and grain yield. Symbiosis 2021. [DOI: 10.1007/s13199-021-00755-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|