1
|
Pineda-Mendoza RM, Gutiérrez-Ávila JL, Salazar KF, Rivera-Orduña FN, Davis TS, Zúñiga G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front Microbiol 2024; 15:1360488. [PMID: 38525076 PMCID: PMC10959539 DOI: 10.3389/fmicb.2024.1360488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of β-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Luis Gutiérrez-Ávila
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Gan T, An H, Tang M, Chen H. Establishment of RNA Interference Genetic Transformation System and Functional Analysis of FlbA Gene in Leptographium qinlingensis. Int J Mol Sci 2023; 24:13009. [PMID: 37629189 PMCID: PMC10455979 DOI: 10.3390/ijms241613009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Leptographium qinlingensis is a pathogenic fungus of Pinus armandii that is epidemic in the Qinling Mountains. However, an effective gene interference strategy is needed to characterize the pathogenic genes in this fungus on a functional level. Using the RNA silencing vector pSilent-1 as a template, we established an RNA interference genetic transformation system mediated by Agrobacterium tumefaciens GV3101, which is suitable for the gene study for Leptographium qinlingensis by homologous recombination and strain interference system screening. The LqFlbA gene was silenced using the RNA interference approach described above, and the resulting transformants displayed various levels of silencing with a gene silencing effectiveness ranging from 41.8% to 91.4%. The LqFlbA-RNAi mutant displayed altered colony morphology, sluggish mycelium growth, and diminished pathogenicity toward the host P. armandii in comparison to the wild type. The results indicate that this method provides a useful reverse genetic system for studying the gene function of L. qinlingensis, and that LqFlbA plays a crucial role in the growth, development, and pathogenicity of L. qinlingensis.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (H.A.); (M.T.)
| |
Collapse
|
3
|
Cao Q, Koski TM, Li H, Zhang C, Sun J. The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. INSECT SCIENCE 2023; 30:459-472. [PMID: 36003004 DOI: 10.1111/1744-7917.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Semiochemical-based management strategies are important for controlling bark beetles, such as invasive Red Turpentine Beetle (Denroctonus valens), the causal agent for mass mortality of pine trees (Pinus spp.) in China. It has been previously shown that the pheromone verbenone regulates the attack density of this beetle in a dose-dependent manner and that the gut bacteria of D. valens are involved in verbenone production. However, molecular functional verification of the role of gut bacteria in the pheromone production of D. valens is still lacking. To better understand the molecular function of gut bacterial verbenone production, we chose a facultative anaerobic gut bacterium (Enterobacter xiangfangensis) of D. valens based on its strong ability to convert cis-verbenol to verbenone, as shown in our previous study, and investigated its transcriptomics in the presence or absence of cis-verbenol under anaerobic conditions (simulating the anoxic environment in the beetle's gut). Based on this transcriptome analysis, aldehyde dehydrogenase (ALDH1) was identified as a putative key gene responsible for verbenone production and was knocked-down by homologous recombination to obtain a mutant E. xiangfangensis strain. Our results show that these mutants had significantly decreased the ability to convert the monoterpene precursor to verbenone compared with the wild-type bacteria, indicating that ALDH1 is primarily responsible for verbenone conversion for this bacterium species. These findings provide further mechanistic evidence of bacterially mediated pheromone production by D. valens, add new perspective for functional studies of gut bacteria in general, and may aid the development of new gene silencing-based pest management strategies.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhou D, Liu Q, Su X, Zhou X. Transcriptomic analysis of the fungus Graphilbum sp. in response to the pine wood nematode. J Basic Microbiol 2023. [PMID: 36808634 DOI: 10.1002/jobm.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023]
Abstract
Graphilbum species are important blue stain fungi associated with pine trees and are widely distributed throughout Asia, Australia, and North Africa. Pine wood nematode (PWN) primarily feed on ophiostomatoid fungi such as Graphilbum sp. in wood, the population of PWNs was increased, and incomplete organelle structures were observed in Graphilbum sp. hyphal cells following exposure to PWNs. In this study, we showed that Rho and Ras were involved in the MAPK pathway, SNARE binding and small GTPase-mediated signal transduction, and their expression was upregulated in the treatment group. However, the expression of the Rab7 involved in MAPK and small GTPase-mediated signal pathway was downregulated in the treatment group. Thus, further research is needed to study the MAPK pathway and related Ras and Rho genes in Graphilbum sp. associated with the PWN population. Overall, transcriptomic analysis clarified the basic mechanisms of mycelial growth in Graphilbum sp. fungus used as a food source by PWNs.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qinge Liu
- College of Ecology, Lishui University, Lishui, China
| | - Xiu Su
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Vazquez-Ortiz K, Pineda-Mendoza RM, González-Escobedo R, Davis TS, Salazar KF, Rivera-Orduña FN, Zúñiga G. Metabarcoding of mycetangia from the Dendroctonus frontalis species complex (Curculionidae: Scolytinae) reveals diverse and functionally redundant fungal assemblages. Front Microbiol 2022; 13:969230. [PMID: 36187976 PMCID: PMC9524821 DOI: 10.3389/fmicb.2022.969230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendroctonus-bark beetles are associated with microbes that can detoxify terpenes, degrade complex molecules, supplement and recycle nutrients, fix nitrogen, produce semiochemicals, and regulate ecological interactions between microbes. Females of some Dendroctonus species harbor microbes in specialized organs called mycetangia; yet little is known about the microbial diversity contained in these structures. Here, we use metabarcoding to characterize mycetangial fungi from beetle species in the Dendroctonus frontalis complex, and analyze variation in biodiversity of microbial assemblages between beetle species. Overall fungal diversity was represented by 4 phyla, 13 classes, 25 orders, 39 families, and 48 genera, including 33 filamentous fungi, and 15 yeasts. The most abundant genera were Entomocorticium, Candida, Ophiostoma-Sporothrix, Ogataea, Nakazawaea, Yamadazyma, Ceratocystiopsis, Grosmannia-Leptographium, Absidia, and Cyberlindnera. Analysis of α-diversity indicated that fungal assemblages of D. vitei showed the highest richness and diversity, whereas those associated with D. brevicomis and D. barberi had the lowest richness and diversity, respectively. Analysis of β-diversity showed clear differentiation in the assemblages associated with D. adjunctus, D. barberi, and D. brevicomis, but not between closely related species, including D. frontalis and D. mesoamericanus and D. mexicanus and D. vitei. A core mycobiome was not statistically identified; however, the genus Ceratocystiopsis was shared among seven beetle species. Interpretation of a tanglegram suggests evolutionary congruence between fungal assemblages and species of the D. frontalis complex. The presence of different amplicon sequence variants (ASVs) of the same genus in assemblages from species of the D. frontalis complex outlines the complexity of molecular networks, with the most complex assemblages identified from D. vitei, D. mesoamericanus, D. adjunctus, and D. frontalis. Analysis of functional variation of fungal assemblages indicated multiple trophic groupings, symbiotroph/saprotroph guilds represented with the highest frequency (∼31% of identified genera). These findings improve our knowledge about the diversity of mycetangial communities in species of the D. frontalis complex and suggest that minimal apparently specific assemblages are maintained and regulated within mycetangia.
Collapse
Affiliation(s)
- Karina Vazquez-Ortiz
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Román González-Escobedo
- Laboratorio de Microbiología, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Flor N. Rivera-Orduña,
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Gerardo Zúñiga,
| |
Collapse
|
7
|
Gan T, An H, Tang M, Chen H. Phylogeny of Regulators of G-Protein Signaling Genes in Leptographium qinlingensis and Expression Levels of Three RGSs in Response to Different Terpenoids. Microorganisms 2022; 10:microorganisms10091698. [PMID: 36144299 PMCID: PMC9506272 DOI: 10.3390/microorganisms10091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Leptographium qinlingensis is a bark beetle-vectored pine pathogen in the Chinese white pine beetle (Dendroctonus armandi) epidemic in Northwest China. L. qinlingensis colonizes pines despite the trees’ massive oleoresin terpenoid defenses. Regulators of G-protein signaling (RGS) proteins modulate heterotrimeric G-protein signaling negatively and play multiple roles in the growth, asexual development, and pathogenicity of fungi. In this study, we have identified three L. qinlingensis RGS genes, and the phylogenetic analysis shows the highest homology with the regulators of G-protein signaling proteins sequence from Ophiostoma piceae and Grosmannia clavigera. The expression profiles of three RGSs in the mycelium of L. qinlingensis treated with six different terpenoids were detected, as well as their growth rates. Under six terpenoid treatments, the growth and reproduction in L. qinlingensis were significantly inhibited, and the growth inflection day was delayed from 8 days to 12–13 days. By analyzing the expression level of three RGS genes of L. qinlingensis with different treatments, results indicate that LqFlbA plays a crucial role in controlling fungal growth, and both LqRax1 and LqRgsA are involved in overcoming the host chemical resistances and successful colonization.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- Correspondence: ; Tel.: +86-135-1911-6730
| |
Collapse
|
8
|
Liu Y, Zhou Q, Wang Z, Wang H, Zheng G, Zhao J, Lu Q. Pathophysiology and transcriptomic analysis of Picea koraiensis inoculated by bark beetle-vectored fungus Ophiostoma bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:944336. [PMID: 35928703 PMCID: PMC9345248 DOI: 10.3389/fpls.2022.944336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ophiostomatoid fungi exhibit a complex relationship with bark beetles; exhausting of host tree defenses is traditionally regarded as one of the key benefits provided to beetle vectors. Ophiostoma bicolor is one of the dominant species of the mycobiota associated with Ips genus bark beetles which infect the spruce trees across the Eurasian continent. Host spruce trees resist fungal invasion through structural and inducible defenses, but the underlying mechanisms at the molecular level, particularly with respect to the interaction between bark beetle-associated fungi and host trees, remain unclear. The aim of this study was to observe the pathological physiology and molecular changes in Picea koraiensis seedlings after artificial inoculation with O. bicolor strains (TS, BH, QH, MX, and LWQ). This study showed that O. bicolor was a weakly virulent pathogen of spruce, and that the virulent of the five O. bicolor strains showed differentiation. All O. bicolor strains could induce monoterpenoid release. A positive correlation between fungal virulence and release of monoterpenoids was observed. Furthermore, the release rate of monoterpenoids peaked at 4 days post-inoculation (dpi) and then decreased from 4 to 90 dpi. Transcriptomic analysis at 4 dpi showed that many plant-pathogen interaction processes and mitogen-activated protein kinase (MAPK) metabolic processes were activated. The expression of monoterpenoid precursor synthesis genes and diterpenoid synthesis genes was upregulated, indicating that gene expression regulated the release rate of monoterpenoids at 4 dpi. The enriched pathways may reveal the immune response mechanism of spruce to ophiostomatoid fungi. The dominant O. bicolor possibly induces the host defense rather than defense depletion, which is likely the pattern conducted by the pioneers of beetle-associated mycobiota, such as Endoconidiophora spp.. Overall, these results facilitate a better understanding of the interaction mechanism between the dominant association of beetles and the host at the molecular level.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Huiming Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Guiheng Zheng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Dai L, Xie J, Liu Y, Chen H, Zheng J. The cytochrome P450s of Leptographium qinlingensis: Gene characteristics, phylogeny, and expression in response to terpenoids. Fungal Biol 2022; 126:395-406. [DOI: 10.1016/j.funbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
|
10
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-42. [DOI: 10.1007/978-3-030-83783-9_72-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|