1
|
Abouelkheir SS, Mourad MM. Anxiety of microbially synthesized Fe 3O 4-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.). Appl Microbiol Biotechnol 2025; 109:3. [PMID: 39777547 PMCID: PMC11706909 DOI: 10.1007/s00253-024-13386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (Oreochromis sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe3O4-SPIONs by Bacillus sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis's physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages. KEY POINTS: • Biogenic SPIONs: a material of the future. • Characterization is essential to assess the functional properties of the produced SPIONs. • Fe3O4-SPIONs' impact on the red tilapia ontogeny.
Collapse
Affiliation(s)
| | - Mona M Mourad
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
2
|
Pant A, Singh G, Barnwal RP, Sharma T, Singh B. QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis. Int J Pharm 2024; 654:123936. [PMID: 38417727 DOI: 10.1016/j.ijpharm.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Osteoporosis is a metabolic disorder that leads to deterioration of bones. The major challenges confronting osteoporosis therapy include early-stage detection and regular disease monitoring. The present studies employed D-aspartic acid octapeptide (-D-Asp-)8 as bone-targeting peptide for evaluating osteoporosis manifestation, and superparamagnetic iron oxide nanoparticles (SPIONs) as nanocarriers for MRI-aided diagnosis. Thermal decomposition technique was employed to synthesize SPIONs, followed by surface-functionalization with hydrophilic ligands. Failure mode effect analysis and factor screening studies were performed to identify concentrations of SPIONs and ligand as critical material attributes, and systematic optimization was subsequently conducted employing face-centered cubic design. The optimum formulation was delineated using desirability function, and design space demarcated with 178.70 nm as hydrodynamic particle size, -24.40 mV as zeta potential, and 99.89 % as hydrophilic iron content as critical quality attributes. XRD patterns ratified lattice structure and SQUID studies corroborated superparamagnetic properties of hydrophilic SPIONs. Bioconjugation of (-D-Asp-)8 with SPIONs (1:1) was confirmed using UV spectroscopy, FTIR and NMR studies. Cell line studies indicated successful targeting of SPIONs to MG-63 human osteoblasts, ratifying enormous bone-targeting and safety potential of peptide-tethered SPIONs as MRI probes. In vivo MRI imaging studies in rats showcased promising contrast ability and safety of peptide-conjugated SPIONs.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India.
| |
Collapse
|
3
|
Rajaganesh R, Murugan K. Anti-dengue potential and mosquitocidal effect of marine green algae-stabilized Mn-doped superparamagnetic iron oxide nanoparticles (Mn-SPIONs): an eco-friendly approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19575-19594. [PMID: 38363508 DOI: 10.1007/s11356-024-32413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.
Collapse
Affiliation(s)
- Rajapandian Rajaganesh
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
4
|
Sithara NV, Bharathi D, Lee J, Mythili R, Devanesan S, AlSalhi MS. Synthesis of iron oxide nanoparticles using orange fruit peel extract for efficient remediation of dye pollutant in wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:30. [PMID: 38227286 DOI: 10.1007/s10653-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.
Collapse
Affiliation(s)
- N V Sithara
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, 641014, India.
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cardoso BD, Fernandes DEM, Amorim CO, Amaral VS, Coutinho PJG, Rodrigues ARO, Castanheira EMS. Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2597. [PMID: 37764626 PMCID: PMC10535675 DOI: 10.3390/nano13182597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercaptosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using 4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum temperature variation of 20.4 °C, 11.4 °C, and 7.3 °C, respectively, during a 30 min NIR-laser irradiation. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed under different conditions of temperature (37 °C and 42 °C) and pH (5.5 and 7.4), simulating physiological and therapeutic conditions. The results revealed a higher release rate at 42 °C and acidic pH. Release rates significantly increased when introducing the stimulus of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results demonstrate the potential of the MLs developed in this work to the controlled release of DOX under NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release profile in physiological environments with pH 7.4.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
- CMEMS—UMinho, Universidade do Minho, DEI, 4800-058 Guimarães, Portugal
- LABBELS—Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Diana E. M. Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor S. Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, 4710-057 Braga, Portugal (D.E.M.F.)
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Sundara Rajan R. S, Thomas J, Francis D, Daniel EC. Effective gene delivery using size dependant nano core-shell in human cervical cancer cell lines by magnetofection. PLoS One 2023; 18:e0289731. [PMID: 37676882 PMCID: PMC10484435 DOI: 10.1371/journal.pone.0289731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Biocompatible magnetic nanoparticles are effective for gene delivery in vitro and in vivo transfection. These mediators are mainly used to deliver drugs and genes. It can also be used as probes to diagnose and treat various diseases. Magnetic nanoparticles, primarily iron oxide nanoparticles, are used in various biological applications. However, preparing stable and small-size biocompatible core-shell is crucial in site direct gene delivery. In the present study, superparamagnetic iron oxide nanoparticles were synthesized using the chemical co-precipitation method and were functionalized with starch to attain stable particles. These SPIONs were coated with polyethylenimine to give a net positive charge. The fluorescent plasmid DNA bound to the SPIONs were used as a core shell for gene delivery into the HeLa cells via magnetofection. UV-Visible Spectrophotometry analysis showed a peak at 200 nm, which confirms the presence of FeO nanoparticles. The Scanning Electron Microscopy images revealed the formation of spherical-shaped nanoparticles with an average size of 10 nm. X-ray Diffraction also confirmed FeO as a significant constituent element. Vibrating Sample Magnetometry ensures that the nanoparticles are superparamagnetic. Atomic Force Microscopy images show the DNA bound on the surface of the nanoparticles. The gene delivery and transfection efficiency were analyzed by flow cytometry. These nanoparticles could effectively compact the pDNA, allowing efficient gene transfer into the HeLa cell lines.
Collapse
Affiliation(s)
| | - Jobin Thomas
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
- Centre for Nano Bbiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
| | - Elcey C. Daniel
- Biotechnology Research Centre, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Samrot AV, Sathiyasree M, Rahim SBA, Renitta RE, Kasipandian K, Krithika Shree S, Rajalakshmi D, Shobana N, Dhiva S, Abirami S, Visvanathan S, Mohanty BK, Sabesan GS, Chinni SV. Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering-A Review. Polymers (Basel) 2023; 15:polym15061525. [PMID: 36987305 PMCID: PMC10054888 DOI: 10.3390/polym15061525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/30/2023] Open
Abstract
Biological macromolecules like polysaccharides/proteins/glycoproteins have been widely used in the field of tissue engineering due to their ability to mimic the extracellular matrix of tissue. In addition to this, these macromolecules are found to have higher biocompatibility and no/lesser toxicity when compared to synthetic polymers. In recent years, scaffolds made up of proteins, polysaccharides, or glycoproteins have been highly used due to their tensile strength, biodegradability, and flexibility. This review is about the fabrication methods and applications of scaffolds made using various biological macromolecules, including polysaccharides like chitosan, agarose, cellulose, and dextran and proteins like soy proteins, zein proteins, etc. Biopolymer-based nanocomposite production and its application and limitations are also discussed in this review. This review also emphasizes the importance of using natural polymers rather than synthetic ones for developing scaffolds, as natural polymers have unique properties, like high biocompatibility, biodegradability, accessibility, stability, absence of toxicity, and low cost.
Collapse
Affiliation(s)
- Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Mahendran Sathiyasree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sadiq Batcha Abdul Rahim
- Faculty of Engineering, Built Environment and IT, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Robinson Emilin Renitta
- Department of Food Processing, Karunya Institute of Technology and Science, Coimbatore 641114, Tamil Nadu, India
| | - Kasirajan Kasipandian
- Faculty of Engineering, Built Environment and IT, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sivasuriyan Krithika Shree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Deenadhayalan Rajalakshmi
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Nagarajan Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Shanmugaboopathi Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India
| | - Sasi Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi, Affiliated to Manonmaniam Sundaranar University, Thoothukudi 628003, Tamil Nadu, India
| | - Sridevi Visvanathan
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah Darul Aman, Malaysia
| | - Basanta Kumar Mohanty
- Faculty of Medicine, Manipal University College Malaysia (MUCM), Jalan Padang Jambu, Bukit Baru 75150, Melaka, Malaysia
| | - Gokul Shankar Sabesan
- Faculty of Medicine, Manipal University College Malaysia (MUCM), Jalan Padang Jambu, Bukit Baru 75150, Melaka, Malaysia
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
8
|
Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184115. [PMID: 36603803 DOI: 10.1016/j.bbamem.2022.184115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400μg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Collapse
|
9
|
Hasan MJ, Westphal E, Chen P, Saini A, Chu IW, Watzman SJ, Ureña-Benavides E, Vasquez ES. Adsorptive properties and on-demand magnetic response of lignin@Fe 3O 4 nanoparticles at castor oil-water interfaces. RSC Adv 2023; 13:2768-2779. [PMID: 36756408 PMCID: PMC9850361 DOI: 10.1039/d2ra07952f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Lignin@Fe3O4 nanoparticles adsorb at oil-water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0-540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water ratio of 50/50 and above. Increasing the concentration of lignin@Fe3O4 improved the emulsion stability and demulsification rates with 540 mT applied magnetic field strength. The adsorption of lignin@Fe3O4 nanoparticles at the oil/water interface using 1-pentanol evaporation through Marangoni effects was demonstrated, and magnetic manipulation of a lignin@Fe3O4 stabilized castor oil spill in water was shown. Nanoparticle concentration and applied magnetic field strengths were analyzed for the recovery of spilled oil from water; it was observed that increasing the magnetic strength increased oil spill motion for a lignin@Fe3O4 concentration of up to 0.8 mg mL-1 at 540 mT. Overall, this study demonstrates the potential of lignin-magnetite nanocomposites for rapid on-demand magnetic responses to externally induced stimuli.
Collapse
Affiliation(s)
- Mohammad Jahid Hasan
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Emily Westphal
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Peng Chen
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Abhishek Saini
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - I-Wei Chu
- Institute of Imaging and Analytical Technology, Mississippi State UniversityMississippi StateMS39762USA
| | - Sarah J. Watzman
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - Esteban Ureña-Benavides
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Erick S. Vasquez
- Department of Chemical and Materials Engineering, University of Dayton, 300 College ParkDaytonOH45469-0256USA,Integrative Science and Engineering Center, University of Dayton, 300 College ParkDaytonOH45469USA
| |
Collapse
|
10
|
Samrot AV, Bavanilatha M, Krithika Shree S, Sathiyasree M, Vanjinathan J, Shobana N, Thirugnanasambandam R, Kumar C, Wilson S, Rajalakshmi D, Noel Richard Prakash LX, Sanjay Preeth RS. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. TOXICS 2022; 10:742. [PMID: 36548575 PMCID: PMC9783389 DOI: 10.3390/toxics10120742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are potential candidates for wastewater treatment especially for the removal of heavy metals due to their strong affinity. Many biopolymers are used as adsorbents and encapsulation of nanoparticle onto them can increase their efficiency. In this study, SPIONs, alginate, and SPIONs incorporated on alginate beads have been synthesized and characterized both microscopically and spectroscopically. These were then used for the removal of chromium metal and the percentage of removal was evaluated using a batch adsorption study. The percent removal of chromium using SPIONs, alginate and alginate-SPIONs beads were recorded to be 93%, 91% and 94%, respectively. The adsorption of chromium using SPIONs and alginate-SPIONs beads followed the Tempkin isotherm, whereas adsorption of chromium metal by alginate beads was found to be homogeneous in nature and followed the Langmuir isotherm with an R2 value of 0.9784. An in-vivo study using Danio rerio as a model organism was done to examine the toxicity and the removal efficiency of the samples. It was observed that chromium water treated with alginate-SPIONs beads, which were removed after water treatment showed less damage to the fishes when compared to SPIONs and alginate beads treated with chromium water where the SPIONs and alginate beads were not removed after the treatment period.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - Muthiah Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sivasuriyan Krithika Shree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Mahendran Sathiyasree
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Jayaram Vanjinathan
- Department of Civil Engineering, Sathyabama Institute of Science and Technology, School of Building and Environment, Chennai 600119, Tamil Nadu, India
| | - Nagarajan Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajendran Thirugnanasambandam
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Chandrasekaran Kumar
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES—Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Samraj Wilson
- Department of Botany, St. John’s College, Tirunelveli 627002, Tamil Nadu, India
| | - Deenadhayalan Rajalakshmi
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Ram Singh Sanjay Preeth
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
11
|
Singh H, Kour S, Selvaraj M. Magnetically separable template assisted iron nanoparticle for the enhancement of latent fingerprints. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:576. [PMID: 35159921 PMCID: PMC8839423 DOI: 10.3390/nano12030576] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (T.P.); (P.F.); (J.-A.C.)
| |
Collapse
|
13
|
Mithun Prakash R, Ningaraju C, Gayathri K, Teja Y, Aslam Manthrammel M, Shkir M, AlFaify S, Sakar M. One-step solution auto-combustion process for the rapid synthesis of crystalline phase iron oxide nanoparticles with improved magnetic and photocatalytic properties. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. NEW J CHEM 2022; 46:12488-12499. [DOI: 10.1039/d1nj05867c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Iron nanoparticles are typically made from inorganic precursors, but for the first time, we synthesized-Fe2O3-NCs from goat blood (a bio-precursor) employing the RBC lysis method (a molecular level approach).
Collapse
Affiliation(s)
- Sreevani Vellingiri
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chandrababu Rejeeth
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | - Nipun Babu Varukattu
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Alok Sharma
- Department of Pharmacognosy ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Health Sciences and Technology, Harvard University – Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Soundarapandian Kannan
- Division of cancer nanomedicine, School of life science, Periyar University, Salem 636011, India
| |
Collapse
|
15
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
16
|
Lee HK, Yoo DH, Jo SE, Choi SJ. Removal of nitrate from radioactive wastewater using magnetic multi-walled carbon nanotubes. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Shaheen TI, Capron I. Formulation of re-dispersible dry o/w emulsions using cellulose nanocrystals decorated with metal/metal oxide nanoparticles. RSC Adv 2021; 11:32143-32151. [PMID: 35495516 PMCID: PMC9041789 DOI: 10.1039/d1ra06054f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
This study describes for the first time the preparation of re-dispersible surfactant-free dry eicosane oil emulsion using cellulose nanocrystals (CNCs) using the freeze-drying technique. Surface properties of CNCs constitute a critical point for the stability of o/w emulsions and thus can affect both the droplet size and dispersion properties of the emulsion. Therefore, surface modification of CNCs was performed to understand its effect on the size of the obtained re-dispersible dry o/w eicosane emulsion. Decoration of the CNC surface with metal and metal oxide nanoparticles was conducted through the available alcoholic groups of glycosidic units of CNC, which played a dual role in reducing and stabilizing nanoparticles. Of these nanoparticles, silver (AgNPs), gold (AuNPs), copper oxide (CuO-NPs), and iron oxide (Fe3O4-NPs) nanoparticles were prepared via a facile route using alkali activated CNCs. Thorough characterizations pertaining to the as-prepared nanoparticles and their re-dispersible dry eicosane o/w emulsions were investigated using UV-vis spectroscopy, TEM, XRD, particle size, zeta potential, and STEM. Results confirmed the ability of CNCs to stabilize and/or reduce the formed nanoparticles with different sizes and shapes. These nanoparticles showed different shapes and surface charges accompanied by individual morphologies, reflecting on the stability of the re-dispersed dry eicosane emulsions with droplet sizes varying from 1.25 to 0.5 μm. Schematic diagram for the detailed preparation of dry eicosane o/w emulsions.![]()
Collapse
Affiliation(s)
- Tharwat I Shaheen
- National Research Centre (Scopus affiliation ID 60014618), Textile Industries Research Division (former El-Tahrir str.), Dokki, P.O. 12622 Giza Egypt
| | - Isabelle Capron
- INRAE, UR1268 Biopolymeres Interactions Assemblages 44316 Nantes France
| |
Collapse
|
18
|
Zomorodian K, Veisi H, Yazdanpanah S, Najafi S, Iraji A, Hemmati S, Karmakar B, Veisi H. Design and in vitro antifungal activity of Nystatin loaded chitosan-coated magnetite nanoparticles for targeted therapy. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1977821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Veisi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanpanah
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saba Hemmati
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, Gobardanga, India
| | - Hojat Veisi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
19
|
Sumitha N, Prakash P, Nair BN, Sailaja GS. Degradation-Dependent Controlled Delivery of Doxorubicin by Glyoxal Cross-Linked Magnetic and Porous Chitosan Microspheres. ACS OMEGA 2021; 6:21472-21484. [PMID: 34471750 PMCID: PMC8388080 DOI: 10.1021/acsomega.1c02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Glyoxal cross-linked porous magnetic chitosan microspheres, GMS (∼170 μm size), with a tunable degradation profile were synthesized by a water-in-oil emulsion technique to accomplish controlled delivery of doxorubicin (DOX), a chemotherapeutic drug, to ensure prolonged chemotherapeutic effects. The GMS exhibit superparamagnetism with saturation magnetization, M s = 7.2 emu g-1. The in vitro swelling and degradation results demonstrate that a swelling plateau of GMS is reached at 24 h, while degradation can be modulated to begin at 96-120 h by formulating the cross-linked network using glyoxal. MTT assay, live/dead staining, and F-actin staining (actin/DAPI) validated the cytocompatibility of GMS, which further assured good drug loading capacity (35.8%). The release mechanism has two stages, initiated by diffusion-inspired release of DOX through the swollen polymer network (72 h), which is followed by a disintegration-tuned release profile (>96 h) conferring GMS a potential candidate for DOX delivery.
Collapse
Affiliation(s)
- Nechikkottil
Sivadasan Sumitha
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
| | - Prabha Prakash
- Department
of Biotechnology, Cochin University of Science
and Technology, Kochi 682 022, Kerala, India
| | - Balagopal N. Nair
- School
of Molecular and Life Sciences (MLS), Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth WA6845, Australia
| | - Gopalakrishnanchettiar Sivakamiammal Sailaja
- Department
of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Inter
University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi 682 022, Kerala, India
- Centre
for Excellence in Advanced Materials, Cochin
University of Science and Technology, Kochi 682 022, Kerala, India
| |
Collapse
|
20
|
Sridharan B, Devarajan N, Jobanputra R, Gowd GS, Anna IM, Ashokan A, Nair S, Koyakutty M. nCP:Fe Nanocontrast Agent for Magnetic Resonance Imaging-Based Early Detection of Liver Cirrhosis and Hepatocellular Carcinoma. ACS APPLIED BIO MATERIALS 2021; 4:3398-3409. [PMID: 35014424 DOI: 10.1021/acsabm.1c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early detection of liver tumors and cirrhotic lesions by magnetic resonance imaging (MRI) remains a great challenge. Here, we report a biomineral nanocontrast agent based on iron-doped nanocalcium phosphate (nCP:Fe-CA) for magnetic resonance imaging of early-stage liver cirrhotic and hepatocellular carcinoma nodules using rat models. We have optimized an intravenously injectable, aqueous suspension of nCP:Fe-CA having an average size of 137.6 nm, a spherical shape, magnetic relaxivity of 63 mM-1S-1, and colloidal stability for 48 h, post-resuspension in an aqueous phase. Compared to superparamagnetic iron oxide nanoparticles (SPIONs), the optimized nCP:Fe-CA could detect liver tumor lesions as small as ∼0.25 cm, whereas the current clinical detection limit is ∼1 cm. In addition, multiple cirrhotic nodules of size <0.2 cm could be detected by nCP:Fe-CA-assisted MRI. The number of nodules observed after injecting nCP:Fe-CA was ∼3 times higher than that without CA (5-10 nodules). A biocompatibility study on healthy rats injected with nCP:Fe-CA showed unaltered liver transaminases, blood urea nitrogen, serum creatinine, and insignificant hemolysis. Furthermore, hepatobiliary clearance of nCP:Fe-CA was observed in 72 h compared to prolonged retention of SPIONs for 30 days when tested under identical conditions. Overall, the nCP:Fe-CA nanoparticles showed promising results as a biocompatible, MR contrast (T2) agent for the early-stage imaging of liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Naveen Devarajan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Rupal Jobanputra
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Genekehal Siddaramana Gowd
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Ida Mulayirikkal Anna
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Anusha Ashokan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Shantikumar Nair
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| | - Manzoor Koyakutty
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Healthcare Campus, Kochi 682041, Kerala, India
| |
Collapse
|
21
|
A versatile strategy to synthesize sugar ligand coated superparamagnetic iron oxide nanoparticles and investigation of their antibacterial activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Chelluri LK, Mohanram Y, Jain R, Mallarpu CS, Ponnana M, Kumar D, Krishna Venuganti VV, Kancherla R, Papineni RV, Towner R, Ghosal P. Effect of engineered superparamagnetic iron oxide nanoparticles in targeted cardiac precursor cell delivery by MRI. Biochem Biophys Res Commun 2021; 541:15-21. [PMID: 33461063 DOI: 10.1016/j.bbrc.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
A scientific approach is presented describing the fabrication of nanoprobe (GloTrack) that can act as cardiac precursor label to segregate cells from cardiac/non cardiac origins and traced by magnetic resonance imaging (MRI). Signal regulatory protein alpha (SIRPA) and kinase domain receptor (KDR) recognizing antibodies, form a layer on super paramagnetic iron oxide nanoparticle - poly-ethylene glycol (SPION-PEG) complex, and bind to protein expressed on the surface of cardiac muscle cells. Physical attributes size, distribution, labelling efficiency, echocardiogram (ECG) changes and bio-distribution by MRI were analysed. The results indicate that GloTrack has an average size of 471 nm, exhibits negative potential and promotes labelling efficiency. The bio-distribution of GloTrack in in vivo experiments was traceable in 7T MRI showing high accumulation of GloTrack in cardiac muscles as compared to the liver and spleen. ECG data revealed that GloTrack segregated cardiac precursors has the potential benefit in treating heart failure, thereby paving way in the development of minimal cell manipulation with targeted cell delivery approaches.
Collapse
Affiliation(s)
- Lakshmi Kiran Chelluri
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India.
| | - Yamuna Mohanram
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India
| | - Rashi Jain
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India
| | - Chandra Shekar Mallarpu
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India
| | - Meenakshi Ponnana
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India
| | - Deepak Kumar
- Defence Metallurgical Research Lab, Hyderabad, India
| | | | - Ravindranath Kancherla
- Department of Transplant Biology, Immunology and Stem Cell Lab, Gleneagles Global Hospitals, Hyderabad, India
| | | | - Rheal Towner
- Department of Pathology and Pharmaceutical Sciences, University of Oklahoma Health Science Center, USA
| | - Partha Ghosal
- Defence Metallurgical Research Lab, Hyderabad, India
| |
Collapse
|
23
|
Sneha KR, Benny N, Nair BN, Sailaja GS. Natural rubber latex assisted shape-attuned synthesis of intrinsically radiopaque and magnetic bioceramic nanocomposite with hyperthermia potential for cancer therapeutics. NEW J CHEM 2021. [DOI: 10.1039/d1nj01262b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
N R latex assisted shape-attuned synthesis of intrinsically radiopaque and magnetic nanocomposite with hyperthermia potential for cancer therapeutics.
Collapse
Affiliation(s)
- K. R. Sneha
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
| | - Neenu Benny
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
| | - Balagopal N. Nair
- School of Molecular and Life Sciences (MLS)
- Faculty of Science and Engineering
- Curtin University
- Perth WA6845
- Australia
| | - G. S. Sailaja
- Department of Polymer Science and Rubber Technology
- Cochin University of Science and Technology
- Kochi 682022
- India
- Interuniversity Centre for Nanomaterials and Devices
| |
Collapse
|
24
|
Khan A, Sahu NK. Hydrazone conjugated and DOX loaded PEGylated-Fe 3O 4 mesoporous magnetic nanoclusters (MNCs): hyperthermia and in vitro chemotherapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj03968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the functionalization of MNCs and DOX loading.
Collapse
Affiliation(s)
- Ahmaduddin Khan
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore-632014, TN, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore-632014, TN, India
| |
Collapse
|
25
|
Samrot AV, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, Abubakar A, Selvarani JA, Kumar Subbiah S. Extraction, Purification, and Characterization of Polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and Utilization of Polysaccharides in Nanocarrier Synthesis. Int J Nanomedicine 2020; 15:7097-7115. [PMID: 33061370 PMCID: PMC7524200 DOI: 10.2147/ijn.s259653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Plant gums consist of polysaccharides which can be used in the preparation of nanocarriers and provide a wide application in pharmaceutical applications including as drug delivery agents and the matrices for drug release. The objectives of the study were to collect plant gums from Araucaria heterophylla L and Prosopis chilensis L and to extract and characterize their polysaccharides. Then to utilize these plant gum-derived polysaccharides for the formulation of nanocarriers to use for drug loading and to examine their purpose in drug delivery in vitro. Methods Plant gum was collected, polysaccharide was extracted, purified, characterized using UV-Vis, FTIR, TGA and GCMS and subjected to various bioactive studies. The purified polysaccharide was used for making curcumin-loaded nanocarriers using STMP (sodium trimetaphosphate). Bioactivities were performed on the crude, purified and drug-loaded nanocarriers. These polysaccharide-based nanocarriers were characterized using UV-Vis spectrophotometer, FTIR, SEM, and AFM. Drug release kinetics were performed for the drug-loaded nanocarriers. Results The presence of glucose, xylose and sucrose was studied from the UV-Vis and GCMS analysis. Purified polysaccharides of both the plants showed antioxidant activity and also antibacterial activity against Bacillus sp. Purified polysaccharides were used for nanocarrier synthesis, where the size and shape of the nanocarriers were studied using SEM analysis and AFM analysis. The size of the drug-loaded nanocarriers was found to be around 200 nm. The curcumin-loaded nanocarriers were releasing curcumin slow and steady. Conclusion The extracted pure polysaccharide of A. heterophylla and P. chilensis acted as good antioxidants and showed antibacterial activity against Bacillus sp. These polysaccharides were fabricated into curcumin-loaded nanocarriers whose size was below 200 nm. Both the drug-loaded nanocarriers synthesized using A. heterophylla and P. chilensis showed antibacterial activity with a steady drug release profile. Hence, these natural exudates can serve as biodegradable nanocarriers in drug delivery.
Collapse
Affiliation(s)
- Antony V Samrot
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Teeshalini Kudaiyappan
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Ummu Bisyarah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Anita Mirarmandi
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Etel Faradjeva
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Amira Abubakar
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Jenifer A Selvarani
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Chennai, Tamil Nadu 600119, India
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.,Department of Biotechnology, BIHER, Bharath University, Selaiyur, India
| |
Collapse
|
26
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
27
|
Production and Utilization of SPIONs for In-vitro Drug Release and X-ray Imaging. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Saladino GM, Hamawandi B, Vogt C, Rajarao GK, Toprak MS. Click chemical assembly and validation of bio-functionalized superparamagnetic hybrid microspheres. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractSurface derivatized magnetic nanoparticles have been commonly used for magnetic separation. Facile mechanisms are needed to be developed for the design of bio-functionalized magnetic hybrid materials, where the surfaces can be re-generated for the re-use of the developed platforms. Superparamagnetic iron oxide nanoparticles with a diameter below 10 nm were synthesized via a novel microwave-assisted hydrothermal method in the presence of citrate ions, which allowed to obtain uniform and negatively charged nanoparticles. These were then coupled with Poly-l-lysine (PLL), forming micrometer-sized self-assembled spherical entities. Cross-linking the PLL within these microspheres with glutaraldehyde stabilized them chemically and mechanically. The active bio-functionality was introduced by a protein grafting methodology, using m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester (SMBS). The Moringa oleifera Coagulant Protein (MOCP) from a seed extract was employed for its characteristic coagulation activity. The performance of the MOCP functionalized microspheres was evaluated as a function of turbidity removal of problematic colloidal clay from water via magnetic separation, resulting in over 80% of activity within 15 min. Surface of these hybrid materials can be re-generated by treatment with alcohol, allowing their easy magnetic separation and re-use. The rapid and strong response with tunable magnetic property makes these hybrid microspheres a powerful tool for many potential applications, due to the general applicability of the developed methodology.
Collapse
|
29
|
Samrot AV, Bhavya KS, Angalene JLA, Roshini S, Preethi R, Steffi S, Raji P, Kumar SS. Utilization of gum polysaccharide of Araucaria heterophylla and Azadirachta indica for encapsulation of cyfluthrin loaded super paramagnetic iron oxide nanoparticles for mosquito larvicidal activity. Int J Biol Macromol 2020; 153:1024-1034. [DOI: 10.1016/j.ijbiomac.2019.10.232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022]
|
30
|
Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int J Biol Macromol 2019; 140:393-400. [DOI: 10.1016/j.ijbiomac.2019.08.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
|
31
|
Prakash N, Sadaf M, Salomi A, Daniel EC. Cytotoxicity of functionalized iron oxide nanoparticles coated with rifampicin and tetracycline hydrochloride on Escherichia coli and Staphylococcus aureus. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00973-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Nardecchia S, Sánchez-Moreno P, Vicente JD, Marchal JA, Boulaiz H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E191. [PMID: 30717386 PMCID: PMC6409767 DOI: 10.3390/nano9020191] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
Currently, we are facing increasing demand to develop efficient systems for the detection and treatment of diseases that can realistically improve distinct aspects of healthcare in our society. Sensitive nanomaterials that respond to environmental stimuli can play an important role in this task. In this manuscript, we review the clinical trials carried out to date on thermosensitive nanomaterials, including all those clinical trials in hybrid nanomaterials that respond to other stimuli (e.g., magnetic, infrared radiation, and ultrasound). Specifically, we discuss their use in diagnosis and treatment of different diseases. At present, none of the existing trials focused on diagnosis take advantage of the thermosensitive characteristics of these nanoparticles. Indeed, almost all clinical trials consulted explore the use of Ferumoxytol as a current imaging test enhancer. However, the thermal property is being further exploited in the field of disease treatment, especially for the delivery of antitumor drugs. In this regard, ThermoDox®, based on lysolipid thermally sensitive liposome technology to encapsulate doxorubicin (DOX), is the flagship drug. In this review, we have evidenced the discrepancy existing between the number of published papers in thermosensitive nanomaterials and their clinical use, which could be due to the relative novelty of this area of research; more time is needed to validate it through clinical trials. We have no doubt that in the coming years there will be an explosion of clinical trials related to thermosensitive nanomaterials that will surely help to improve current treatments and, above all, will impact on patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
33
|
Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E935. [PMID: 30428608 PMCID: PMC6266697 DOI: 10.3390/nano8110935] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Progress in nanotechnology has enabled us to open many new fronts in biomedical research by exploiting the peculiar properties of materials at the nanoscale. The thermal sensitivity of certain materials is a highly valuable property because it can be exploited in many promising applications, such as thermo-sensitive drug or gene delivery systems, thermotherapy, thermal biosensors, imaging, and diagnosis. This review focuses on recent advances in thermo-sensitive nanomaterials of interest in biomedical applications. We provide an overview of the different kinds of thermoresponsive nanomaterials, discussing their potential and the physical mechanisms behind their thermal response. We thoroughly review their applications in biomedicine and finally discuss the current challenges and future perspectives of thermal therapies.
Collapse
Affiliation(s)
- Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
34
|
Utilization of Chemically Synthesized Super Paramagnetic Iron Oxide Nanoparticles in Drug Delivery, Imaging and Heavy Metal Removal. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1454-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Justin C, Samrot AV, P. DS, Sahithya CS, Bhavya KS, Saipriya C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One 2018; 13:e0200440. [PMID: 30021002 PMCID: PMC6051608 DOI: 10.1371/journal.pone.0200440] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 01/10/2023] Open
Abstract
In this study, super paramagnetic iron oxide nanoparticles (SPIONs) were produced by chemical co-precipitation method, then it was constructed to be a core shell nanoparticle by functionalizing with SDS, loading with curcumin and coating with a biopolymer i.e. chitosan. Each step was analyzed microscopically and spectroscopically. The produced coreshell particles were between 40 and 45nm and these coreshell particles were utilized for drug delivery studies against cervical cancer cell line-HeLa cells. The coreshell SPIONs were found to be releasing curcumin in between 6 and 12 h, which was evidenced by increased apoptotic cells and increased caspase 3 expression in HeLa cells.
Collapse
Affiliation(s)
- C. Justin
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Antony V. Samrot
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Durga Sruthi P.
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Karanam Sai Bhavya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - C. Saipriya
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| |
Collapse
|