1
|
Wang H, Tian Z, Wang L, Wang H, Zhang Y, Shi Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int J Biol Macromol 2025; 307:141964. [PMID: 40074113 DOI: 10.1016/j.ijbiomac.2025.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging. Electrospinning has enabled the fabrication of pectin nanofibers with tunable morphology and functionality, overcoming traditional limitations such as poor mechanical strength. Advances in blending pectin with other polymers and incorporating bioactive agents have further enhanced their mechanical, biological, and therapeutic properties. In wound healing, pectin nanofibers mimic the extracellular matrix, promote angiogenesis, and deliver bioactive compounds to accelerate tissue regeneration. Challenges such as scalability, regulatory compliance, and mechanical limitations remain barriers to widespread adoption. This review underscores the need for interdisciplinary research to address these challenges and advance the clinical and commercial translation of pectin nanofibers. By critically analyzing recent advancements and outlining future directions, this review highlights the transformative potential of electrospun pectin nanofibers as sustainable, high-performance biomaterials for modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zenan Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Najafi Z, Altay F, Şahin-Yeşilçubuk N. In vitro transdermal release of crocin from electrospun saffron and its comparison with in vitro digestion. Food Res Int 2025; 199:115279. [PMID: 39658144 DOI: 10.1016/j.foodres.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers. The release of SE from NFs was investigated in stimulated gastrointestinal media (SGF and SIF) using a dialysis bag, and transdermal permeation studies were performed via a membrane in a Franz diffusion cell. The wettability and swelling ratio of the NFs were determined. The Pl-Pc-SE sample, which has the lowest contact angle and the highest swelling index, resulted in the highest release of SE during digestion. The Ritger-Peppas and Higuchi models best represented the experimental release data from digestion and transdermal permeation. The release profile of SE from zein NFs in SGF was described using a non-Fickian mechanism. In contrast, the release mechanism for Pl-based NFs in SGF and all NFs during both release experiments was Fickian-controlled diffusion transport. The results indicate that NFs can be successfully used for the controlled delivery of SE and have the potential for transdermal applications as a dietary supplement.
Collapse
Affiliation(s)
- Zahra Najafi
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| | - Filiz Altay
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
| | - Neşe Şahin-Yeşilçubuk
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| |
Collapse
|
3
|
Tavakoli M, Al-Musawi MH, Kalali A, Shekarchizadeh A, Kaviani Y, Mansouri A, Nasiri-Harchegani S, Kharazi AZ, Sharifianjazi F, Sattar M, Varshosaz J, Mehrjoo M, Najafinezhad A, Mirhaj M. Platelet rich fibrin and simvastatin-loaded pectin-based 3D printed-electrospun bilayer scaffold for skin tissue regeneration. Int J Biol Macromol 2024; 265:130954. [PMID: 38499125 DOI: 10.1016/j.ijbiomac.2024.130954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Alma Kalali
- School of Metallurgy and Materials Engineering, Iran University of Science & Technology, Tehran, Iran
| | | | - Yeganeh Kaviani
- Department of Biomedical Engineering, University of Meybod, Yazd, Iran
| | - Agrin Mansouri
- Department of Biology, Isfahan University, Isfahan, Iran
| | - Sepideh Nasiri-Harchegani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Iran.
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Mamoona Sattar
- Research group of Microbiological Engineering and Medical Materials, College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
4
|
Wei YS, Feng K, Wu H. Regulation of the colon-targeted release rate of lactoferrin by constructing hydrophobic ethyl cellulose/pectin composite nanofibrous carrier and its effect on anti-colon cancer activity. Int J Biol Macromol 2024; 261:129466. [PMID: 38242414 DOI: 10.1016/j.ijbiomac.2024.129466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
In order to modify colonic release behavior of lactoferrin (Lf), a hydrophobic composite nanofibrous carrier (CNC) was constructed by emulsion coaxial electrospinning. Ethylcellulose/pectin based water-in-oil emulsion and Lf-contained polyvinyl alcohol solution were used as shell and core fluids, respectively. An electrospinning diagram was first constructed to screen out suitable viscosity (51-82 cP) and conductivity (960-1300 μS/cm) of the dispersed phase of pectin solution for successful electrospinning of shell emulsion. Varying mass fraction of pectin solution (5 %-20 %) of shell emulsion during emulsion coaxial electrospinning obtained CNCs with different micro-structures, labeled as 5&95 CNC, 10&90 CNC, 15&85 CNC, 20&80 CNC. These CNCs all achieved colonic delivery of Lf (>95 %), and the time for complete release of Lf in simulated colon fermentation process were 10, 7, 5 and 3 h, respectively. That is, the greater the pectin content in CNC, the faster the release rate of stabilized Lf in colon. Lf release in simulated colon fermentation fluid involved complex mechanisms, in which diffusion release of Lf was dominant. Increasing colonic release rate of Lf enhanced its regulation effect on the expression levels of cell cycle arrest and apoptosis-related protein and promote its effective inhibition on the proliferation of HCT116 cell.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kun Feng
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
5
|
Chai A, Schmidt K, Brewster G, Xiong LSP, Church B, Wahl T, Sadabadi H, Kumpaty S, Zhang W. Design of Pectin-Based Hydrogel Microspheres for Targeted Pulmonary Delivery. Gels 2023; 9:707. [PMID: 37754388 PMCID: PMC10529711 DOI: 10.3390/gels9090707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary drug delivery via microspheres has gained growing interest as a noninvasive method for therapy. However, drug delivery through the lungs via inhalation faces great challenges due to the natural defense mechanisms of the respiratory tract, such as the removal or deactivation of drugs. This study aims to develop a natural polymer-based microsphere system with a diameter of around 3 μm for encapsulating pulmonary drugs and facilitating their delivery to the deep lungs. Pectin was chosen as the foundational material due to its biocompatibility and degradability in physiological environments. Electrospray was used to produce the pectin-based hydrogel microspheres, and Design-Expert software was used to optimize the production process for microsphere size and uniformity. The optimized conditions were determined to be as follows: pectin/PEO ratio of 3:1, voltage of 14.4 kV, distance of 18.2 cm, and flow rate of 0.95 mL/h. The stability and responsiveness of the pectin-based hydrogel microspheres can be altered through coatings such as gelatin. Furthermore, the potential of the microspheres for pulmonary drug delivery (i.e., their responsiveness to the deep lung environment) was investigated. Successfully coated microspheres with 0.75% gelatin in 0.3 M mannitol exhibited improved stability while retaining high responsiveness in the simulated lung fluid (Gamble's solution). A gelatin-coated pectin-based microsphere system was developed, which could potentially be used for targeted drug delivery to reach the deep lungs and rapid release of the drug.
Collapse
Affiliation(s)
- Andy Chai
- Department of Chemistry, Rhodes College, Memphis, TN 38112, USA;
| | - Keagan Schmidt
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (K.S.); (G.B.); (L.S.P.X.)
| | - Gregory Brewster
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (K.S.); (G.B.); (L.S.P.X.)
| | - Lu Shi Peng Xiong
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (K.S.); (G.B.); (L.S.P.X.)
| | - Benjamin Church
- Advanced Analysis Facility, College of Engineering & Applied Science, University of Wisconsin—Milwaukee, Milwaukee, WI 53211, USA; (B.C.); (H.S.)
- Materials Science & Engineering Department, University of Wisconsin—Milwaukee, Milwaukee, WI 53211, USA
| | - Timothy Wahl
- School of Freshwater Sciences, University of Wisconsin—Milwaukee, Milwaukee, WI 53204, USA;
| | - Hamed Sadabadi
- Advanced Analysis Facility, College of Engineering & Applied Science, University of Wisconsin—Milwaukee, Milwaukee, WI 53211, USA; (B.C.); (H.S.)
| | - Subha Kumpaty
- Department of Mechanical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53211, USA;
| | - Wujie Zhang
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (K.S.); (G.B.); (L.S.P.X.)
| |
Collapse
|
6
|
Martínez-Sabando J, Coin F, Melillo JH, Goyanes S, Cerveny S. A Review of Pectin-Based Material for Applications in Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062207. [PMID: 36984087 PMCID: PMC10055932 DOI: 10.3390/ma16062207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/12/2023]
Abstract
Climate change and water are inseparably connected. Extreme weather events cause water to become more scarce, polluted, and erratic than ever. Therefore, we urgently need to develop solutions to reduce water contamination. This review intends to demonstrate that pectin-based materials are an excellent route to detect and mitigate pollutants from water, with several benefits. Pectin is a biodegradable polymer, extractable from vegetables, and contains several hydroxyl and carboxyl groups that can easily interact with the contaminant ions. In addition, pectin-based materials can be prepared in different forms (films, hydrogels, or beads) and cross-linked with several agents to change their molecular structure. Consequently, the pectin-based adsorbents can be tuned to remove diverse pollutants. Here, we will summarize the existing water remediation technologies highlighting adsorption as the ideal method. Then, the focus will be on the chemical structure of pectin and, from a historical perspective, on its structure after applying different cross-linking methods. Finally, we will review the application of pectin as an adsorbent of water pollutants considering the pectin of low degree methoxylation.
Collapse
Affiliation(s)
- Javier Martínez-Sabando
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Francesco Coin
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Jorge H. Melillo
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Física de Buenos Aires (IFIBA), CONICET—Universidad de Buenos Aires, Ciudad Universitaria (C1428EGA), Buenos Aires 1113, Argentina
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain
| |
Collapse
|
7
|
Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
8
|
Martin AMV, Flores DC, Siacor FDC, Taboada EB, Tan NPB. Preparation of mango peel-waste pectin-based nanofibers by solution blow spinning (SBS). NANOTECHNOLOGY 2022; 33:495602. [PMID: 35994941 DOI: 10.1088/1361-6528/ac8b8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
An essential prerequisite for successful solution blow spinning (SBS) is the presence of effective molecular entanglements of polymers in the solution. However, the fabrication of biopolymer fibers is not as straightforward as synthetic polymers. Particularly for biopolymers such as pectin, molecular entanglements are essential but insufficient for successful spinning through the SBS production method. Such a challenge is due to the biopolymer's complex nature. However, incorporating an easily spinnable polymer precursor, such as polyacrylonitrile (PAN), to pectin effectively enabled the production of fibers from the SBS process. In this process, PAN-assisted pectin nanofibers are produced with average diameters ranging from 410.75 ± 3.73 to 477.09 ± 6.60 nm using a feed flow rate of 5 ml h-1, air pressure of 3 bars, syringe tip to collector distance at 30 cm, and spinning time of 10 min. PAN in DMSO solvent at different volume ratios (i.e. 35%-55% v/v) was critical in assisting pectin to produce nanofibers. The addition of a high molecular weight polymer, PAN, to pectin also improved the viscoelasticity of the solution, eventually contributing to its successful SBS process. Furthermore, the composite SBS-spun fibers obtained suggest that its formation is concentration-dependent.
Collapse
Affiliation(s)
- Alvin Mar V Martin
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Dharyl C Flores
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Francis Dave C Siacor
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Evelyn B Taboada
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Noel Peter B Tan
- Department of Chemical Engineering, College of Technology, University of San Agustin, Iloilo City, 5000, The Philippines
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City, 5000, The Philippines
| |
Collapse
|
9
|
Zirak Hassan Kiadeh S, Ghaee A, Pishbin F, Nourmohammadi J, Farokhi M. Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. Int J Biol Macromol 2022; 216:605-617. [PMID: 35809673 DOI: 10.1016/j.ijbiomac.2022.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.
Collapse
Affiliation(s)
- Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Zheng C, Huang W, Zou Y, Huang W, Fei P, Zhang G. Fabrication of phenylalanine amidated pectin using ultra-low temperature enzymatic method and its hydrogel properties in drug sustained release application. Int J Biol Macromol 2022; 216:263-271. [PMID: 35788006 DOI: 10.1016/j.ijbiomac.2022.06.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
In this study, pectin was modified with phenylalanine by ultra-low temperature enzymatic method to improve its gel properties. The grafting ratio of phenylalanine amidated pectin was studied under different reaction conditions. The highest value (29.21 %) was reached a reaction temperature of -5 °C and time of 12 h. Further analysis indicated that phenylalanine and high methoxyl pectin combined at the solid-liquid two phase interface under the catalysis of papain to form phenylalanine amidated pectin. Moreover, the physicochemical properties of pectin hydrogel and its feasibility as a sustained-release drug carrier were discussed. The results showed that phenylalanine amidated pectin can form hydrogel with a certain strength under acidic conditions, and there is no need to add a lot of soluble solids and divalent cations. Besides, the phenylalanine amidated pectin hydrogel as a sustained release carrier of drugs showed more sustained and complete drug release.
Collapse
Affiliation(s)
- Chenmin Zheng
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Wanping Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yuping Zou
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Wensi Huang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Guoguang Zhang
- The Engineering Technological Center of Mushroom Industry, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
11
|
Fernandes M, Padrão J, Ribeiro AI, Fernandes RDV, Melro L, Nicolau T, Mehravani B, Alves C, Rodrigues R, Zille A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1006. [PMID: 35335819 PMCID: PMC8950406 DOI: 10.3390/nano12061006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Nanotechnology is a powerful tool for engineering functional materials that has the potential to transform textiles into high-performance, value-added products. In recent years, there has been considerable interest in the development of functional textiles using metal nanoparticles (MNPs). The incorporation of MNPs in textiles allows for the obtention of multifunctional properties, such as ultraviolet (UV) protection, self-cleaning, and electrical conductivity, as well as antimicrobial, antistatic, antiwrinkle, and flame retardant properties, without compromising the inherent characteristics of the textile. Environmental sustainability is also one of the main motivations in development and innovation in the textile industry. Thus, the synthesis of MNPs using ecofriendly sources, such as polysaccharides, is of high importance. The main functions of polysaccharides in these processes are the reduction and stabilization of MNPs, as well as the adhesion of MNPs onto fabrics. This review covers the major research attempts to obtain textiles with different functional properties using polysaccharides and MNPs. The main polysaccharides reported include chitosan, alginate, starch, cyclodextrins, and cellulose, with silver, zinc, copper, and titanium being the most explored MNPs. The potential applications of these functionalized textiles are also reported, and they include healthcare (wound dressing, drug release), protection (antimicrobial activity, UV protection, flame retardant), and environmental remediation (catalysts).
Collapse
|
12
|
Zheng J, Yang Q, Shi X, Xie Z, Hu J, Liu Y. Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. Carbohydr Polym 2021; 269:118314. [PMID: 34294328 DOI: 10.1016/j.carbpol.2021.118314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Pectin nanofiber mats prepared with periodate oxidation-electrospinning-adipic acid dihydrazide crosslinking strategy are promising for biomedical applications. In this study, we systematically examined the effects of electrospinning and crosslinking conditions on the properties of pectin nanofiber mats. The properties of mats were tunable in the range of 200-400 nm fiber size, 11-21% ADH residue content, 13-28 times absorbency, 13°-21° contact angle, 2 weeks or longer degradation time, 1.5-2.2 MPa tensile strength, 40-70% elongation, and 0.25-0.27 g/(cm2·24 h) permeability. Increasing polymer concentration, adipic acid dihydrazide amount, time or temperature could increase fiber size and its tensile strength, and decrease the absorbency, hydrophilicity, degradation rate, and elongation. These results indicate that controlling the process parameters can effectively regulate the properties of pectin nanofiber mats and meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Jia Zheng
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| | - Qianwen Yang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| | - Xiaoqi Shi
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| |
Collapse
|
13
|
Dierings de Souza EJ, Kringel DH, Guerra Dias AR, da Rosa Zavareze E. Polysaccharides as wall material for the encapsulation of essential oils by electrospun technique. Carbohydr Polym 2021; 265:118068. [PMID: 33966832 DOI: 10.1016/j.carbpol.2021.118068] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Electrospinning is a versatile, inexpensive and reliable technique for the synthesis of nanometric fibers or particles from polymeric solutions, under a high voltage electric field. The use of natural polysaccharides such as starch, chitosan, pectin, alginate, pullulan, cellulose and dextran as polymeric materials allows the formation of biodegradable fibers and capsules. Bioactive compounds extracted from natural sources, such as essential oils, have been widely studied due to their antioxidant, antimicrobial and antifungal properties. The combination of natural polymers and the electrospinning technique allows the production of structures capable of incorporating these bioactive compounds, which are highly sensitive to degradation reactions. This review describes several approaches to the development of nanofibers and nanocapsules from polysaccharides and the possibility of incorporating hydrophobic compounds, such as essential oils. The review also discusses the use of electrosprayed products incorporated with essential oils for direct application in food or for use as active food packaging.
Collapse
Affiliation(s)
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
14
|
Moslemi M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr Polym 2021; 254:117324. [DOI: 10.1016/j.carbpol.2020.117324] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023]
|
15
|
Das R, Fernandez JG. Cellulose Nanofibers for Encapsulation and Pluripotency Preservation in the Early Development of Embryonic Stem Cells. Biomacromolecules 2020; 21:4814-4822. [PMID: 32931265 DOI: 10.1021/acs.biomac.0c01030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Materials for three-dimensional cultures aim to reproduce the function of the extracellular matrix, enabling cell adhesion and growth by remodeling the environment. However, embryonic stem cells (ESCs) must develop in environments that prevent adhesion and preserve their pluripotency. In this study, we used cellulose nanofiber hydrogels to mimic the developing conditions required for ESCs. These plant-based hydrogels are simultaneously biocompatible and exogenous to mammalian cells, preventing remodeling and attachment. The storage modulus of these hydrogels could be fine-tuned by varying the degree of oxidation to enable selective degradation. The ESCs proliferated in the artificial environment, forming increasingly large embryoid bodies for 15 days. Unlike traditional cultures in which ESCs begin differentiating upon the removal of the chemical inhibition, the expression of pluripotency markers in the ESC population remained high for the entire two weeks. Cellulase from Trichoderma reesei was used to retrieve the ESC cultures selectively. The proposed unique system is a prospective model with which to study the early development of embryonic cells, as well as a nonchemical method of preserving undifferentiated populations of ESCs.
Collapse
Affiliation(s)
- Rupambika Das
- Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Javier G Fernandez
- Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
16
|
Fathi HA, Abdelkader A, AbdelKarim MS, Abdelaziz AA, El-Mokhtar MA, Allam A, Fetih G, El Badry M, Elsabahy M. Electrospun vancomycin-loaded nanofibers for management of methicillin-resistant Staphylococcus aureus-induced skin infections. Int J Pharm 2020; 586:119620. [PMID: 32652179 DOI: 10.1016/j.ijpharm.2020.119620] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Skin damage exposes the underlying layers to bacterial invasion, leading to skin and soft tissue infections. Several pathogens have developed resistance against conventional topical antimicrobial treatments and rendered them less effective. Recently, several nanomedical strategies have emerged as a potential approach to improve therapeutic outcomes of treating bacterial skin infections. In the current study, nanofibers were utilized for topical delivery of the antimicrobial drug vancomycin and evaluated as a promising tool for treatment of topical skin infections. Vancomycin-loaded nanofibers were prepared via electrospinning technique, and vancomycin-loaded nanofibers of the optimal composition exhibited nanosized uniform smooth fibers (ca. 200 nm diameter), high drug entrapment efficiency and sustained drug release patterns over 48 h. In vitro cytotoxicity assays, using several cell lines, revealed the biocompatibility of the drug-loaded nanofibers. In vitro antibacterial studies showed sustained antibacterial activity of the vancomycin-loaded nanofibers against methicillin-resistant Staphylococcus aureus (MRSA), in comparison to the free drug. The nanofibers were then tested in animal model of superficial MRSA skin infection and demonstrated a superior antibacterial efficiency, as compared to animals treated with the free vancomycin solution. Hence, nanofibers might provide an efficient nanodevice to overcome MRSA-induced skin infections and a promising topical delivery vehicle for antimicrobial drugs.
Collapse
Affiliation(s)
- Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Ayat Abdelkader
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Mahmoud S AbdelKarim
- Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71515, Egypt
| | - Ayman A Abdelaziz
- Department of Physics, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Mohamed A El-Mokhtar
- Department of Microbiology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Gihan Fetih
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mahmoud El Badry
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mahmoud Elsabahy
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Science Academy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
17
|
Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. MATERIALS 2020; 13:ma13030673. [PMID: 32028627 PMCID: PMC7042806 DOI: 10.3390/ma13030673] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
Abstract
Regardless of the considerable progress in properties and versatility of synthetic polymers, their low biodegradability and lack of environmentally-friendly character remains a critical issue. Pectin is a natural-based polysaccharide contained in the cell walls of many plants allowing their growth and cell extension. This biopolymer can be extracted from plants and isolated as a bioplastic material with different applications, including food packaging. This review aims to present the latest research results regarding pectin, including the structure, different types, natural sources and potential use in several sectors, particularly in food packaging materials. Many researchers are currently working on a multitude of food and beverage industry applications related to pectin as well as combinations with other biopolymers to improve some key properties, such as antioxidant/antimicrobial performance and flexibility to obtain films. All these advances are covered in this review.
Collapse
|
18
|
Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG900), were added to the selected pectin solution in the 2–3 wt% range. The optimal annealing conditions were found at 150 °C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene.
Collapse
|
19
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
20
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
21
|
Kato N, Nagayoshi K, Takayama Y, Nasuno E. Structuring of multiple parallel pectin gel filaments by applied shear. Int J Biol Macromol 2019; 128:304-313. [PMID: 30684582 DOI: 10.1016/j.ijbiomac.2019.01.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
The bundled structure of micron-sized pectin gel filaments was formed by quick shear-induced gelation of the filamentous domains of pectin-polyethylene glycol (PEG) assemblies. Highly concentrated pectin with PEG in a separated pectin-rich phase under aqueous two-phase separation in the pectin/PEG/NaCl system enabled the formation of the pectin-PEG assembly, which was elongated in the flow direction, resulting in the generation of filamentous domains using a microfluidic device. The pectin gel filaments were formed by crosslinking with Ca2+ in the presence of shear-responsive PEG assemblies formed in the PEG-rich phase, because the filamentous PEG assemblies prevented fusion of the pectin filaments to form the seamless cylindrical gel. The shear-dependent elongation applied to the pectin-PEG assembly under the aqueous two-phase separation condition enabled the formation of the biomimetic bundled filamentous structure using bio-safe PEG as a sacrificial polymer, without the requirement of a multi-hole nozzle. Potential applications for gel filaments possessing a bundled structure are matrices in the biomedical field, such as a biodegradable scaffold for cell engineering.
Collapse
Affiliation(s)
- Norihiro Kato
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Keisyu Nagayoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Yuriko Takayama
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Eri Nasuno
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| |
Collapse
|
22
|
Jatoi AW, Gianchandani PK, Kim IS, Ni QQ. Sonication induced effective approach for coloration of compact polyacrylonitrile (PAN) nanofibers. ULTRASONICS SONOCHEMISTRY 2019; 51:399-405. [PMID: 30262234 DOI: 10.1016/j.ultsonch.2018.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
We present our research on dyeability of polyacrylonitrile (PAN) nanofibers following ultrasonic dyeing method. Although PAN has been extensively utilized in textile apparel, sportswear, upholstery and home furnishing, however, coloration of PAN nanofibers has not yet been reported. PAN is a compact fiber while the nanofiber structure makes it more difficult to color PAN nanofibers. PAN is generally dyed with basic dyes and dyeing is carried out in acidic conditions, while the dyeing process takes about two hours at boiling temperature. A systematic study on dyeability of PAN nanofibers will extend its use in textile apparel industry. Thus, we used ultrasonic energy and first time conducted our research on dyeability of electrospun PAN nanofibers using disperse dyes. Dyeing process parameters such as dyeing time, temperatures and concentrations of dyes were optimized. Ultrasonic dyeing of PAN nanofibers was compared with its conventional dyeing as well. Affect of ultrasonic dyeing on the morphology, chemical state, crystallographic structure and mechanical strength of PAN nanofibers has been studied. PAN nanofiber samples were characterized by SEM, FTIR, XRD and tensile strength tests. The results revealed 80 °C and 60 min as optimum temperature and time for ultrasonic dyeing of PAN nanofibers. The ultrasonic dyeing does not affect morphology, chemical and crystalline structure of the PAN nanofibers while it improves their mechanical strength. Our research suggests dyeability of PAN nanofibers with disperse dyes by ultrasonic method and their subsequent use in textile apparels.
Collapse
Affiliation(s)
- Abdul Wahab Jatoi
- Bioscience and Textile Technology Department, Shinshu University, 3-15-1 Tokida, Ueda-shi 386-8567, Japan; Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
| | - Pardeep Kumar Gianchandani
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan.
| | - Qing-Qing Ni
- Department of Mechanical Engineering and Robotics, Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan.
| |
Collapse
|
23
|
Jatoi AW, Kim IS, Ni QQ. Ultrasonic energy-assisted coloration of polyurethane nanofibers. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0823-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|