1
|
Xu J, Xia W, Sheng G, Jiao G, Liu Z, Wang Y, Zhang X. Progress of disinfection catalysts in advanced oxidation processes, mechanisms and synergistic antibiotic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169580. [PMID: 38154648 DOI: 10.1016/j.scitotenv.2023.169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Human diseases caused by pathogenic microorganisms make people pay more attention to disinfection. Meanwhile, antibiotics can cause microbial resistance and increase the difficulty of disease treatment, resulting in risk of triggering a vicious circle. Advanced oxidation process (AOPs) has been widely studied in the field of synergistic treatment of the two contaminates. This paper reviews the application of catalytic materials and their modification strategies in the context of AOPs for disinfection and antibiotic degradation. It also delves into the mechanisms of disinfection such as the pathways for microbial inactivation and the related influencing factors, which are essential for understanding the pivotal role of catalytic materials in disinfection principles by AOPs. More importantly, the exploratory research on the combined use of AOPs for disinfection and antibiotic degradation is discussed, and the potential and prospects in this field is highlighted. Finally, the limitations and challenges associated with the application of AOPs in disinfection and antibiotic degradation are summarized. It aims to provide a starting point for future research efforts to facilitate the widespread use of advanced oxidation processes in the field of public health.
Collapse
Affiliation(s)
- Jin Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wannan Xia
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guo Sheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guanhao Jiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenhao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
V V, Alsawalha M, Alomayri T, Allehyani S, Hu YB, Fu ML, Yuan B. MWCNT supported V 2O 5 quantum dot nanoparticles decorated Bi 2O 3 nanosheets hybrid system: Efficient visible light driven photocatalyst for degradation of ciprofloxacin. CHEMOSPHERE 2022; 306:135505. [PMID: 35779680 DOI: 10.1016/j.chemosphere.2022.135505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
A novel composite of multiwall carbon nanotube (MWCNT) supported V2O5 quantum dots decorated Bi2O3 hybrid was prepared by the simple wet-impregnation method, and the photocatalytic performance of the prepared samples was investigated against the photodegradation of ciprofloxacin (CIP). Herein, different samples of pristine, V2O5/Bi2O3 and MWCNT@V2O5/Bi2O3 hybrid photocatalyst were prepared and systematically characterized by various physicochemical techniques. The characterization results demonstrated that the introduction of MWCNT can change the energy band gap of V2O5/Bi2O3, and the band energies vary with a constituent of MWCNT@V2O5/Bi2O3 catalyst, in which MWCNT@V2O5/Bi2O3-5 (0.05 g@0.50 g:0.50 g) has the optimal band gap energy of 2.46 eV. The photocatalytic test demonstrates that the MWCNT@V2O5/Bi2O3-5 hybrid composites exhibited enhanced photocatalytic activity in CIP degradation compared to that pure and other photocatalyst and its degradation efficiency did not decrease significantly even after five cyclic experiments. The enhanced photocatalytic activity was due to the formation of heterojunction among MWCNT, V2O5 and Bi2O3, which distinctly improved the separation efficiency of the photogenerated charge carrier, thus increasing the degradation performance. This work gives a new approach to designing an efficient photocatalyst for contaminants degradation.
Collapse
Affiliation(s)
- Vasanthakumar V
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Murad Alsawalha
- Department of Chemical Engineering, Industrial Chemistry Division, Jubail Industrial College, P.O. Box 10099, Jubail, 31961, Saudi Arabia
| | - Thamer Alomayri
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Saud Allehyani
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
3
|
Facile synthesis of molybdenum multisulfide composite nanorod arrays from single-source precursor for photoelectrochemical hydrogen generation. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J. Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2
WO6
Nanosheets with Enhanced Photocatalytic Activities. Angew Chem Int Ed Engl 2019; 58:2073-2077. [DOI: 10.1002/anie.201813417] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/20/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jundie Hu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Zhao Mo
- Institute for Energy Research; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Najun Li
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hui Xu
- Institute for Energy Research; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jianmei Lu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
5
|
Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J. Z-Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi2
WO6
Nanosheets with Enhanced Photocatalytic Activities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jundie Hu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Zhao Mo
- Institute for Energy Research; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Najun Li
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| | - Hui Xu
- Institute for Energy Research; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jianmei Lu
- College of Chemistry; Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|