1
|
Ayaz F, Demir D, Bölgen N. Electrospun nanofiber mats caged the mammalian macrophages on their surfaces and prevented their inflammatory responses independent of the fiber diameter. Sci Rep 2024; 14:12339. [PMID: 38811651 PMCID: PMC11137074 DOI: 10.1038/s41598-024-61450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Poly-ε-caprolactone (PCL) has been widely used as biocompatible materials in tissue engineering. They have been used in mammalian cell proliferation to polarization and differentiation. Their modified versions had regulatory activities on mammalian macrophages in vitro. There are also studies suggesting different nanofiber diameters might alter the biological activities of these materials. Based on these cues, we examined the inflammatory activities and adherence properties of mammalian macrophages on electrospun PCL nanofibrous scaffolds formed with PCL having different nanofiber diameters. Our results suggest that macrophages could easily attach and get dispersed on the scaffolds. Macrophages lost their inflammatory cytokine TNF and IL6 production capacity in the presence of LPS when they were incubated on nanofibers. These effects were independent of the mean fiber diameters. Overall, the scaffolds have potential to be used as biocompatible materials to suppress excessive inflammatory reactions during tissue and organ transplantation by caging and suppressing the inflammatory cells.
Collapse
Affiliation(s)
- Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, 34010, Istanbul, Turkey.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33343, Tarsus, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
2
|
Jamil M, Mustafa IS, Sahul Hamid SB, Ahmed NM, Khazaalah TH, Godwin E, Ezra NS, Salah HN. Parameterisation and cellular evaluation of poly(ethylene) oxide-coated erbium oxide in MCF-7 cells as MRI diagnostic nanofibres. Colloids Surf B Biointerfaces 2023; 228:113423. [PMID: 37390675 DOI: 10.1016/j.colsurfb.2023.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The novelty of this work is the conjugation of poly(ethylene) oxide (PEO) with the erbium oxide (Er2O3) nanoparticles using the electrospinning technique. In this work, synthesised PEO-coated Er2O3 nanofibres were characterised and evaluated for their cytotoxicity to assess their potential use as diagnostic nanofibres for magnetic resonance imaging (MRI). PEO has significantly impacted nanoparticle conductivity due to its lower ionic conductivity at room temperature. The findings showed that the surface roughness was improved over the nanofiller loading, implying an improvement in cell attachment. The release profile performed for drug-controlling purposes has demonstrated a stable release after 30 min. Cellular response in MCF-7 cells showed high biocompatibility of the synthesised nanofibres. The cytotoxicity assay results showed that the diagnostic nanofibres had excellent biocompatibility, indicating the feasibility for diagnosis purposes. With excellent contrast performance, the PEO-coated Er2O3 nanofibres developed novel T2 and T1-T2 dual-mode MRI diagnostic nanofibres leading to better cancer diagnosis. In conclusion, this work has demonstrated that the conjugation of PEO-coated Er2O3 nanofibres improved the surface modification of the Er2O3 nanoparticles as a potential diagnostic agent. Using PEO in this study as a carrier or polymer matrix significantly influenced the biocompatibility and internalisation efficiency of the Er2O3 nanoparticles without triggering any morphological changes after treatment. This work has suggested permissible concentrations of PEO-coated Er2O3 nanofibres for diagnostic uses.
Collapse
Affiliation(s)
- Munirah Jamil
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | | | - Shahrul Bariyah Sahul Hamid
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Medical Instrumentation Engineering, Dijlah University College, Baghdad, Iraq
| | | | - Efenji Godwin
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Physics, Federal University Lokoja, P.M.B. 1154, Lokoja, Kogi State, Nigeria
| | - Nabasu Seth Ezra
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Physics, Faculty of Natural Science, Plateau State University, P.O. Box 2012 Bokkos, Jos Plateau State, Nigeria
| | - Hayder Naeem Salah
- School of Physics, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Science Department, College of Basic Education, Al-Muthanna University, Iraq
| |
Collapse
|
3
|
Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids Surf B Biointerfaces 2023; 227:113342. [PMID: 37224613 DOI: 10.1016/j.colsurfb.2023.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention among several nanoscale materials during the last decade due to their unique properties. These properties make them successful nanofillers for drug delivery and a number of new biomedical applications. MNPs are more useful when combined with biodegradable polymers. In this review, we discussed the synthesis of polycaprolactones (PCL) and the various methods of synthesizing magnetic iron oxide nanoparticles. Then, the synthesis of composites that is made of PCL and magnetic materials (with special focus on iron oxide nanoparticles) were highlighted. In addition, we comprehensively reviewed their application in drug delivery, cancer treatment, wound healing, hyperthermia, and bone tissue engineering. Other biomedical applications of the magnetic PCL such as mitochondria targeting are highlighted. Moreover, biomedical applications of magnetic nanoparticles incorporated into other synthetic polymers apart from PCL are also discussed. Thus, great progress and better outcome with functionalized MNPs enhanced with polycaprolactone has been recorded with the biomedical applications of drug delivery and recovery of bone tissues.
Collapse
Affiliation(s)
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa.
| | - Sabelo D Mhlanga
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa
| | - Hazel T Mufhandu
- Department of Microbiology, North-West University, Mafikeng, South Africa.
| |
Collapse
|
4
|
Iannotti V, Ausanio G, Ferretti AM, Babar ZUD, Guarino V, Ambrosio L, Lanotte L. Magnetic Response of Nano/Microparticles into Elastomeric Electrospun Fibers. J Funct Biomater 2023; 14:jfb14020078. [PMID: 36826877 PMCID: PMC9962632 DOI: 10.3390/jfb14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Combining magnetic nanoparticles (MNPs) with high-voltage processes to produce ultra-thin magnetic nanofibers (MNFs) fosters the development of next-generation technologies. In this study, polycarbonate urethane nanofibers incorporating magnetic particles were produced via the electrospinning technique. Two distinct types of magnetic payload were used: (a) iron oxide nanoparticles (IONPs) with an average size and polydispersity index of 7.2 nm and 3.3%, respectively; (b) nickel particles (NiPs) exhibiting a bimodal size distribution with average sizes of 129 nanometers and 600 nanometers, respectively, and corresponding polydispersity indexes of 27.8% and 3.9%. Due to varying particle sizes, significant differences were observed in their aggregation and distribution within the nanofibers. Further, the magnetic response of the IONP and/or NiP-loaded fiber mats was consistent with their morphology and polydispersity index. In the case of IONPs, the remanence ratio (Mr/Ms) and the coercive field (Hc) were found to be zero, which agrees with their superparamagnetic behavior when the average size is smaller than 20-30 nm. However, the NiPs show Mr/Ms = 22% with a coercive field of 0.2kOe as expected for particles in a single or pseudo-single domain state interacting with each other via dipolar interaction. We conclude that magnetic properties can be modulated by controlling the average size and polydispersity index of the magnetic particles embedded in fiber mats to design magneto-active systems suitable for different applications (i.e., wound healing and drug delivery).
Collapse
Affiliation(s)
- Vincenzo Iannotti
- CNR-SPIN and Department of Physics “E. Pancini”, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-0817682419
| | - Giovanni Ausanio
- CNR-SPIN and Department of Physics “E. Pancini”, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Anna M. Ferretti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino, 10, 80138 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Luciano Lanotte
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
5
|
Preda MD, Popa ML, Neacșu IA, Grumezescu AM, Ginghină O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int J Mol Sci 2023; 24:ijms24021629. [PMID: 36675140 PMCID: PMC9862659 DOI: 10.3390/ijms24021629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
There has been a surge in interest in developing protective textiles and clothes to protect wearers from risks such as chemical, biological, heat, UV, pollution, and other environmental factors. Traditional protective textiles have strong water resistance but lack breathability and have a limited capacity to remove water vapor and moisture. Electrospun fibers and membranes have shown enormous promise in developing protective materials and garments. Textiles made up of electrospun fibers and membranes can provide thermal comfort and protection against a wide range of environmental threats. Because of their multifunctional properties, such as semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes, ZnO-based nanomaterials are a subject of increasing interest in the current review. The growing uses of electrospinning in the development of breathable and protective textiles are highlighted in this review.
Collapse
Affiliation(s)
- Manuela Daniela Preda
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Leila Popa
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Octav Ginghină
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila from Bucharest, 37 Dionisie Lupu Street, District 2, 020021 Bucharest, Romania
| |
Collapse
|
6
|
Erickson A, Chiarelli PA, Huang J, Levengood SL, Zhang M. Electrospun nanofibers for 3-D cancer models, diagnostics, and therapy. NANOSCALE HORIZONS 2022; 7:1279-1298. [PMID: 36106417 DOI: 10.1039/d2nh00328g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As one of the leading causes of global mortality, cancer has prompted extensive research and development to advance efficacious drug discovery, sustained drug delivery and improved sensitivity in diagnosis. Towards these applications, nanofibers synthesized by electrospinning have exhibited great clinical potential as a biomimetic tumor microenvironment model for drug screening, a controllable platform for localized, prolonged drug release for cancer therapy, and a highly sensitive cancer diagnostic tool for capture and isolation of circulating tumor cells in the bloodstream and for detection of cancer-associated biomarkers. This review provides an overview of applied nanofiber design with focus on versatile electrospinning fabrication techniques. The influence of topographical, physical, and biochemical properties on the function of nanofiber assemblies is discussed, as well as current and foreseeable barriers to the clinical translation of applied nanofibers in the field of oncology.
Collapse
Affiliation(s)
- Ariane Erickson
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Peter A Chiarelli
- The Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jianxi Huang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. A Study on the Effect of Nanoscale MgO and Hydrogen Bonding in Nanofiber Mats for the Controlled Drug Release along with In Vitro Breast Cancer Cell Line and Antimicrobial Studies. ACS APPLIED BIO MATERIALS 2022; 5:4327-4341. [PMID: 36062471 DOI: 10.1021/acsabm.2c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanosized metal oxide-incorporated drug carriers have received significant attention due to their biocompatibility, mechanical strength, controlled drug release, and biodegradability. Herein, an attempt was made to fabricate polycaprolactone-based electrospun nanofiber mats involving the 5-fluorouracil (5Fu) drug, MgO nanoparticle, methyl cellulose, and polyethylene glycol. The chemical interactions, surface wettability, mechanical properties, structural and morphological changes, and thermal stability were studied by the respective analyses. The ionic interaction between 5Fu, MgO, and polymers were found to be responsible for the controlled drug release. Zero-order kinetic and model data also revealed that a controlled drug release pattern was observed in a period of 16 days. Furthermore, the nanofiber mats were subjected to cytotoxicity studies against MDA-MB-231 cancer cell line and the results showed higher cytotoxicity in a short time of 24 h and less toxicity to normal L929 fibroblast cell line. The apoptosis in cancer cell lines was also tested by AO/PI staining assay and confirmed by fluorescence microscopy. In addition, the growth inhibition of several bacterial and fungal strains was tested for the mats and the results exhibited good inhibition activity. Hence, the reported nanofiber drug carrier was found to be an efficient implant for the controlled release of anticancer drug along with other significant properties.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| | - Marimuthu Thirumarimurugan
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, Tamil Nadu, India
| |
Collapse
|
8
|
Hamid A, Zafar A, Liaqat I, Afzal MS, Peng L, Rauf MK, Ul Haq I, Ur-Rehman A, Ali S, Aftab MN. Effective utilization of magnetic nano-coupled cloned β-xylanase in saccharification process. RSC Adv 2022; 12:6463-6475. [PMID: 35424589 PMCID: PMC8982049 DOI: 10.1039/d1ra09275h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3. The cloned β-xylanase was covalently bound to iron oxide magnetic nanoparticles coated with silica utilizing carbodiimide. The size of the immobilized MNPs (50 nm) and their binding with β-xylanase were characterized by Fourier-transform electron microscopy (FTIR) (a change in shift particularly from C-O to C-N) and transmission electron microscopy (TEM) (spherical in shape and 50 nm in diameter). The results showed that enzyme activity (4.5 ± 0.23 U per mL), thermo-stability (90 °C after 4 hours, residual activity of enzyme calculated as 29.89% ± 0.72), pH stability (91% ± 1.91 at pH 7), metal ion stability (57% ± 1.08 increase with Ca2+), reusability (13 times) and storage stability (96 days storage at 4 °C) of the immobilized β-xylanase was effective and superior. The immobilized β-xylanase exhibited maximal enzyme activity at pH 7 and 90 °C. Repeated enzyme assay and saccharification of pretreated rice straw showed that the MNP-enzyme complex exhibited 56% ± 0.76 and 11% ± 0.56 residual activity after 8 times and 13 times repeated usage. The MNP-enzyme complex showed 17.32% and 15.52% saccharification percentage after 1st and 8th time usage respectively. Immobilized β-xylanase exhibited 96% residual activity on 96 days' storage at 4 °C that showed excellent stability.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University Lahore Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT) Lahore Pakistan
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | | | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Asad Ur-Rehman
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore Pakistan +92-3444704190
| |
Collapse
|
9
|
Banerjee A, Jariwala T, Baek YK, To DTH, Tai Y, Liu J, Park H, Myung NV, Nam J. Magneto- and opto-stimuli responsive nanofibers as a controlled drug delivery system. NANOTECHNOLOGY 2021; 32:505101. [PMID: 34525464 DOI: 10.1088/1361-6528/ac2700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The drawbacks of conventional drug administration include repeated administration, non-specific biodistribution in the body's systems, the long-term unsustainability of drug molecules, and high global cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled-release methods encapsulate drug molecules in biodegradable materials that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. To address these limitations, we developed a magneto-, opto-stimuli responsive drug delivery system based on functionalized electrospun nanofibers loaded with superparamagnetic iron oxide nanoparticles (SPIONs). We exploited the Néel relaxation effect of SPIONs, where heat generated from vibrating SPIONs under exogenously applied magnetic fields or laser illumination induced structural changes of the thermo-sensitive nanofibers that encapsulate the particles. We showed that this structural change of nanofibers is the governing factor in controlling the release of dye molecules, used as a model drug and co-encapsulated within the nanofibers. We also showed that the degree of nanofiber structural change depends on SPION loading and duration of stimulation, demonstrating the tunability of the drug release profile. Overall, we demonstrated the potential of SPION-embedded thermoplastic nanofibers as an attractive platform for on-demand drug delivery.
Collapse
Affiliation(s)
- Aihik Banerjee
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Tanvi Jariwala
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Youn-Kyung Baek
- Department of Magnetic Materials, Powder Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan gu, Changwon, Gyeongnam, Republic of Korea
| | - Dung Thi Hanh To
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Youyi Tai
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Junze Liu
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Hyle Park
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| | - Nosang V Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jin Nam
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, United States of America
| |
Collapse
|
10
|
Abstract
Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite (Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown increased tensile strength with increasing concentration of employed nanoparticles. In contrast to PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can provide the attached cells with valuable iron element and consequently promote the cells growth rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to enhance the biological performance for liver tissue engineering purposes.
Collapse
|
11
|
Güngör A, Demir D, Bölgen N, Özdemir T, Genç R. Dual stimuli-responsive chitosan grafted poly(NIPAM-co-AAc)/poly(vinyl alcohol) hydrogels for drug delivery applications. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmet Güngör
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Didem Demir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Tonguç Özdemir
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Rükan Genç
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
12
|
Ceylan S. Propolis loaded and genipin-crosslinked PVA/chitosan membranes; characterization properties and cytocompatibility/genotoxicity response for wound dressing applications. Int J Biol Macromol 2021; 181:1196-1206. [PMID: 33991555 DOI: 10.1016/j.ijbiomac.2021.05.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Loading propolis by a simple process using genipin as a crosslinking agent and fabrication of a novel PVA/Chitosan-Propolis membrane scaffolds were reported for wound dressing applications. The research is focused on the effects of propolis on characterization properties of membrane such as chemical structure, surface morphology, degradation ratio, crystallinity, hydrophilicity, water uptake capacity, water vapour transmission rate and mechanical aspect. It was noticed that water uptake capacity and hydrophilicity properties of membrane considerably affected by the propolis. By addition of (0.50, % v/v) propolis, the contact angle of the PVA/Chitosan membrane was remarkably decreased from 86.29° ± 3 to 45 ± 2°. 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenylte-trazolium (MTT) bromide test and SEM were used to analyse the cytocompatibility of the membranes and morphology of cells on membrane. The propolis incorporated membrane showed cell proliferation rate 176 ± 13%, 775 ± 1%, and 853 ± 23%, at 24 h, 27 h and 120 h, respectively. SEM images also supported the cell behaviour on membrane. DNA fragmentation was also investigated with genotoxicity test. The studies on the interactions between membranes and MEF cells revealed that the incorporation of propolis into membrane promoted cell proliferation. These overall results presented that propolis incorporated membranes could have potentially appealing application as scaffolds for wound healing applications.
Collapse
Affiliation(s)
- Seda Ceylan
- Bioengineering Department, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey.
| |
Collapse
|
13
|
Saleh M, Demir D, Ozay Y, Yalvac M, Bolgen N, Dizge N. Fabrication of basalt embedded composite fiber membrane using electrospinning method and response surface methodology. J Appl Polym Sci 2021. [DOI: 10.1002/app.50599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohammed Saleh
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Didem Demir
- Department of Chemical Engineering Mersin University Mersin Turkey
| | - Yasin Ozay
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Mutlu Yalvac
- Department of Environmental Engineering Mersin University Mersin Turkey
| | - Nimet Bolgen
- Department of Chemical Engineering Mersin University Mersin Turkey
| | - Nadir Dizge
- Department of Environmental Engineering Mersin University Mersin Turkey
| |
Collapse
|
14
|
Aydemir Sezer U, Ozturk Yavuz K, Ors G, Bay S, Aru B, Sogut O, Akgul Caglar T, Bozkurt MR, Cagavi E, Yanikkaya Demirel G, Sezer S, Karaca H. Zero-valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. J Tissue Eng Regen Med 2020; 14:1815-1826. [PMID: 33010108 DOI: 10.1002/term.3137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Regeneration of nerve tissue is a challenging issue in regenerative medicine. Especially, the peripheral nerve defects related to the accidents are one of the leading health problems. For large degeneration of peripheral nerve, nerve grafts are used in order to obtain a connection. These grafts should be biodegradable to prevent second surgical intervention. In order to make more effective nerve tissue engineering materials, nanotechnological improvements were used. Especially, the addition of electrically conductive and biocompatible metallic particles and carbon structures has essential roles in the stimulation of nerves. However, the metabolizing of these structures remains to wonder because of their nondegradable nature. In this study, biodegradable and conductive nerve tissue engineering materials containing zero-valent iron (Fe) nanoparticles were developed and investigated under in vitro conditions. By using electrospinning technique, fibrous mats composed of electrospun poly(ε-caprolactone) (PCL) nanofibers and Fe nanoparticles were obtained. Both electrical conductivity and mechanical properties increased compared with control group that does not contain nanoparticles. Conductivity of PCL/Fe5 and PCL/Fe10 increased to 0.0041 and 0.0152 from 0.0013 Scm-1 , respectively. Cytotoxicity results indicated toxicity for composite mat containing 20% Fe nanoparticles (PCL/Fe20). SH-SY5Y cells were grown on PCL/Fe10 best, which contains 10% Fe nanoparticles. Beta III tubulin staining of dorsal root ganglion neurons seeded on mats revealed higher cell number on PCL/Fe10. This study demonstrated the impact of zero-valent Fe nanoparticles on nerve regeneration. The results showed the efficacy of the conductive nanoparticles, and the amount in the composition has essential roles in the promotion of the neurites.
Collapse
Affiliation(s)
- Umran Aydemir Sezer
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey.,Department of Regenerative Medicine, Institute of Health Sciences, Isparta, Turkey.,Semical Technology Industry and Trade Co. Ltd., Suleyman Demirel University, Lake District Technopark, Isparta, Turkey
| | | | - Gizem Ors
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sadık Bay
- Neuroscience PhD Programme, Institute of Health, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Basak Aru
- Faculty of Medicine, Immunology Department, Yeditepe University, Istanbul, Turkey
| | - Oguz Sogut
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey
| | - Tuba Akgul Caglar
- Neuroscience PhD Programme, Institute of Health, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Recep Bozkurt
- Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Turkey
| | - Esra Cagavi
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | | | - Serdar Sezer
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey.,Department of Regenerative Medicine, Institute of Health Sciences, Isparta, Turkey.,Semical Technology Industry and Trade Co. Ltd., Suleyman Demirel University, Lake District Technopark, Isparta, Turkey
| | - Huseyin Karaca
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| |
Collapse
|
15
|
Yalcinkaya F, Komarek M. Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces. Int J Mol Sci 2019; 20:ijms20174317. [PMID: 31484450 PMCID: PMC6747065 DOI: 10.3390/ijms20174317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, nanoparticle-incorporated nanofiber-covered yarns were prepared using a custom-made needle-free electrospinning system. The ultimate goal of this work was to prepare functional nanofibrous surfaces with antibacterial properties and realize high-speed production. As antibacterial agents, we used various amounts of copper oxide (CuO) and vanadium (V) oxide (V2O5) nanoparticles (NPs). Three yarn preparation speeds (100 m/min, 150 m/min, and 200 m/min) were used for the nanofiber-covered yarn. The results indicate a relationship between the yarn speed, quantity of NPs, and antibacterial efficiency of the material. We found a higher yarn speed to be associated with a lower reduction in bacteria. NP-loaded nanofiber yarns were proven to have excellent antibacterial properties against Gram-negative Escherichia coli (E. coli). CuO exhibited a greater inhibition and bactericidal effect against E. coli than V2O5. In brief, the studied samples are good candidates for use in antibacterial textile surface applications, such as wastewater filtration. As greater attention is being drawn to this field, this work provides new insights regarding the antibacterial textile surfaces of nanofiber-covered yarns.
Collapse
Affiliation(s)
- Fatma Yalcinkaya
- Department of Nanotechnology and Informatics, Institute of Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
- Institute for New Technologies and Applied Informatics, Faculty of Mechatronics, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| | - Michal Komarek
- Department of Nanotechnology and Informatics, Institute of Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
- Institute for New Technologies and Applied Informatics, Faculty of Mechatronics, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
| |
Collapse
|
16
|
Co-immobilization of multiple enzymes onto surface-functionalized magnetic nanoparticle for the simultaneous hydrolysis of multiple substrates containing industrial wastes. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01125-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|