1
|
Torkaman P, Karimzadeh R, Jafari A. Assessment of the synthesis method of Fe 3O 4 nanocatalysts and its effectiveness in viscosity reduction and heavy oil upgrading. Sci Rep 2023; 13:18151. [PMID: 37875527 PMCID: PMC10598015 DOI: 10.1038/s41598-023-41441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/26/2023] [Indexed: 10/26/2023] Open
Abstract
In this research, Fe3O4 nanocatalysts were synthesized systematically microwave-assisted. The effectiveness of the synthesized nanocatalysts in reducing viscosity and upgrading heavy oil was evaluated. The nanocatalysts were investigated for their magnetic and electromagnetic properties. The impact of microwave radiation's time and power on the size and purity of nanocatalysts was investigated. The purities in the crystal network of Fe3O4 nanocatalysts expanded as a result of reducing microwave radiation time and power due to less heat production. Increased temperature leads to dope NH4Cl into the Fe3O4 nanocatalysts crystal network. At: 1 min and power of 400 watts the most satisfactory results in the size and purity of nanocatalysts. The electromagnetic properties, size, and effectiveness of the synthesized Fe3O4 nanocatalysts have been examined to determine the effect of the synthesis method. The performance of Fe3O4 nanocatalysts synthesized by co-precipitation and microwave-assisted viscosity reduction and heavy oil upgrading was evaluated and compared. The crystallite size of the Fe3O4 nanocatalysts synthesized by microwave-assisted was smaller than that synthesized using co-precipitation. Fe3O4 nanocatalysts synthesized by microwave-assisted and the co-precipitation method decreased viscosity by 28% and 23%, respectively. Moreover, Fe3O4 nanocatalysts synthesized by microwave-assisted reduced the sulfoxide index and aromatic index considerably more than the co-precipitation synthesized Fe3O4 (90% against. 48% and 13% vs. 7%, respectively).
Collapse
Affiliation(s)
- Parya Torkaman
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ramin Karimzadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Arezou Jafari
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Baabu PRS, Kumar HK, Gumpu MB, Babu K J, Kulandaisamy AJ, Rayappan JBB. Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010059. [PMID: 36614400 PMCID: PMC9820855 DOI: 10.3390/ma16010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/14/2023]
Abstract
Materials science and technology, with the advent of nanotechnology, has brought about innumerable nanomaterials and multi-functional materials, with intriguing yet profound properties, into the scientific realm. Even a minor functionalization of a nanomaterial brings about vast changes in its properties that could be potentially utilized in various applications, particularly for biological applications, as one of the primary needs at present is for point-of-care devices that can provide swifter, accurate, reliable, and reproducible results for the detection of various physiological conditions, or as elements that could increase the resolution of current bio-imaging procedures. In this regard, iron oxide nanoparticles, a major class of metal oxide nanoparticles, have been sweepingly synthesized, characterized, and studied for their essential properties; there are 14 polymorphs that have been reported so far in the literature. With such a background, this review's primary focus is the discussion of the different synthesis methods along with their structural, optical, magnetic, rheological and phase transformation properties. Subsequently, the review has been extrapolated to summarize the effective use of these nanoparticles as contrast agents in bio-imaging, therapeutic agents making use of its immune-toxicity and subsequent usage in hyperthermia for the treatment of cancer, electron transfer agents in copious electrochemical based enzymatic or non-enzymatic biosensors and bactericidal coatings over biomaterials to reduce the biofilm formation significantly.
Collapse
Affiliation(s)
- Priyannth Ramasami Sundhar Baabu
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hariprasad Krishna Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Acrophase, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Manju Bhargavi Gumpu
- Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Jayanth Babu K
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | | | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
4
|
An approach towards the synthesis of faceted Ga2O3 nano- and micro-structures through the microwave process. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|