1
|
Magar HS, El Nahrawy AM, Hassan RYA, Abou Hammad AB. Nanohexagonal iron barium titanate nanoparticles surface-modified NiFe 2O 4 composite screen-printed electrode for enzymatic glucose monitoring. RSC Adv 2024; 14:34948-34963. [PMID: 39493544 PMCID: PMC11528421 DOI: 10.1039/d4ra06689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
A nanocomposite of iron barium titanate/NiFe2O4 (FBT/NF) was synthesized using sol-gel techniques to form organized hexagonal structures. The effects of NiFe2O4 nanostructures on FBT's phase purity, morphology, and dielectric properties were systematically explored and intensively discussed. TEM imaging confirmed the hexagonal structure, and electrical measurements revealed that para-electric NF influenced the conductivity and impedance of ferroelectric FBT, with a shift in Curie temperature to lower values. The FBT/NF nanocomposite was optimized for use in glucose amperometric biosensors, offering fast and direct electron transfer from glucose oxidase that was chemically immobilized on disposable sensor chips. Thus, the biosensor exhibited high sensitivity (757.14 μA mM-1 cm-2), a fast response time of 50 seconds, and a wide linear range of 0.0027-1.9 mM with a low detection limit of 0.5 μM. Accordingly, the biosensor was exploited for blood glucose detection, showing high precision compared to reference methods. These findings highlighted the potential of the FBT/NF nanocomposite for use in developing biosensor portable devices.
Collapse
Affiliation(s)
- Hend S Magar
- Applied Organic Chemistry Department, National Research Centre (NRC) Dokki Giza 12622 Egypt +201121926682
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Division, National Research Centre 33 El Bohouth St., Dokki Giza 12622 Egypt
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC) Dokki Giza 12622 Egypt +201121926682
- Biosensors Research Lab, University of Science and Technology (UST), Zewail City of Science and Technology 6th October City Giza 12578 Egypt
| | - Ali B Abou Hammad
- Solid State Physics Department, Physics Research Division, National Research Centre 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
2
|
Abouelnaga AM, Mansour AM, Abou Hammad AB, El Nahrawy AM. Optimizing magnetic, dielectric, and antimicrobial performance in chitosan-PEG-Fe 2O 3@NiO nanomagnetic composites. Int J Biol Macromol 2024; 260:129545. [PMID: 38272427 DOI: 10.1016/j.ijbiomac.2024.129545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
There is a growing interest in eco-friendly and cost-effective organic-inorganic nanocomposites due to their alignment with the principles of "green" chemistry, as well as their biocompatibility and non-toxicity. This study focused on producing Chitosan-PEG-Fe2O3@NiO nanomagnetic composites to improve the stability, dielectric properties, and antimicrobial effectiveness of these nanocomposite materials. The process involved synthesizing Fe2O3@NiO via sol-gel and polymerizing chitosan-PEG. The nanocomposites were characterized by XRD, TEM, FTIR, optical, dielectric, and VSM. Incorporating Fe2O3@NiO significantly improved stability, and the interaction with Fe2O3 during the sol-gel process facilitated the formation of NiFe2O4 with an increase in the crystallinity within the chitosan-PEG matrix. The study examined optical and dielectric properties, highlighting that the 3 NiO-doped chitosan-PEG-Fe2O3 composites had high electrical conductivity (1.8 ∗ 10-3 S/cm) and a significant dielectric constant (106 at low frequencies). As the ratio of NiO NPs within the chitosan-PEG-Fe2O3 increases, the energy band gap of chitosan-PEG-Fe2O3 films decreases up to 3.7 eV. This decrease is owing to the quantum confinement effect. These composites also demonstrated improved antimicrobial activity against E. coli and S. aureus and higher activity in the presence of nanomagnetic particles. The minimum inhibitory concentrations of CS-PEG-Fe2O3/NiO NPs against (Bacillus cereus, M. luteus, S. aureus and (S. enterica, H. pylori, E. coli) were (22-35 mm) and (21-34 mm), respectively.
Collapse
Affiliation(s)
- Amel Mohamed Abouelnaga
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - A M Mansour
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ali B Abou Hammad
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Amany M El Nahrawy
- Solid-State Physics Department, Physics Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
3
|
Facile synthesis of Ca doped CuO nanoparticles and their investigation in antibacterial efficacy. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-022-01303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Ecofriendly synthesis and characterization of Ni 2+ codoped silica magnesium zirconium copper nanoceramics for wastewater treatment applications. Sci Rep 2022; 12:9855. [PMID: 35701523 PMCID: PMC9198069 DOI: 10.1038/s41598-022-13785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
This article investigates the effect of Ni2+ content on structural (XRD, XPS), morphological (TEM), and magnetic behaviors of silica magnesium zirconium copper nanoceramics calcined at 800 °C. The sol–gel route is followed for the silica magnesium zirconium copper/(0.0–0.7) Ni2+ samples preparation. X-ray photoelectron spectroscopy is employed to analyze the chemical states of elements for the samples. The three representative binding energy magnitudes for O, Ni, and Cu reside at 534, 857, and 979 eV, consecutively. The saturation magnetization constricts with the elevation of Ni2+ content, while the magnetic hysteresis loop resembles the superparamagnetic attitude. The optical spectra present the possibility of direct and indirect transitions in the prepared nanoceramics. Energy gap (value and type), refractive index, and real and imaginary dielectric constant were extracted. The energy gap approaches 3.75 eV and 3.71 eV for direct and indirect transitions correspondingly with (0.7) Ni2+. The antimicrobial and the toxicity performance of all inspected nanocomposites were conducted against pathogenic microbes. The attained results evidenced that SMZC-0.7Ni possesses energetic antimicrobial potential against all targeted microbes. The investigated SMZC-0.7Ni nanocomposite functioned to eradicate frequent waterborne pathogens in wastewater at an appropriate dose (100 mg/L), demonstrating that SMZC can be utilized as a competent disinfectant in the municipal wastewater decontamination process. Inherently, SMZC-0.7Ni can be employed as an excellent nano-weapon against multiple dangerous microorganisms.
Collapse
|
5
|
El hotaby W, Bakr AM, Ibrahim HS, Ammar NS, Hani HA, Mostafa AA. Eco-friendly zeolite/alginate microspheres for Ni ions removal from aqueous solution: Kinetic and isotherm study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Rashdan HRM, Shehadi IA, Abdelrahman MT, Hemdan BA. Antibacterial Activities and Molecular Docking of Novel Sulfone Biscompound Containing Bioactive 1,2,3-Triazole Moiety. Molecules 2021; 26:molecules26164817. [PMID: 34443405 PMCID: PMC8399954 DOI: 10.3390/molecules26164817] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Huda R. M. Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence:
| | - Ihsan A. Shehadi
- Chemistry Department, College of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohamad T. Abdelrahman
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 12311, Egypt;
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, Cairo 12622, Egypt;
| |
Collapse
|
7
|
El Nahrawy AM, Elzwawy A, Alam M, Hemdan BA, Asiri AM, Karim MR, Hammad ABA, Rahman MM. Synthesis, structural analysis, electrochemical and antimicrobial activities of copper magnesium zirconosilicate (Cu20Mg10Si40Zr(30-x)O:(x = 0,5,7,10) Ni2+) nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Characterization and antibacterial activity of Streptomycin Sulfate loaded Bioglass/Chitosan beads for bone tissue engineering. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021; 7:e06456. [PMID: 33763612 PMCID: PMC7973307 DOI: 10.1016/j.heliyon.2021.e06456] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
The scientific explorations of nanoparticles for their inherent therapeutic potencies as antimicrobial and antiviral agents due to increasing incidences of antibiotic resistance have gained more attention in recent time. This factor amongst others necessitates the search for newer and more effective antimicrobial agents. Several investigations have demonstrated the prospects of nanoparticles in the treatment of various microbial infections. The therapeutic applications of nanoparticles as either delivery agent or broad spectrum inhibition agents in viral and microbial investigations can no longer be overlooked. Their large surface area to volume ratio made them an indispensable substance as delivery agents in many respect. Various materials have been used for the synthesis of nanoparticles with unique properties channelised to meet specific therapeutic requirement. This review focuses on the antibacterial, antifungal, and antiviral potential of nanoparticles with their probable mechanism of action.
Collapse
Affiliation(s)
- Shabnam Sharmin
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mizanur Rahaman
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Landmark University, P.M.B. 1001, Omu-Aran 251101, Kwara State, Nigeria
| |
Collapse
|
10
|
Shah AH, Rather MA. Effect of Thermal Treatment on the Phase Composition and Surface Properties of WO
3
‐TiO
2
Nanocomposites Synthesized via Hydro‐Thermal Method. ChemistrySelect 2021. [DOI: 10.1002/slct.202004160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aarif Hussain Shah
- Department of Chemical Engineering National Institute of Technology Srinagar J&K 190006 India
| | - Mushtaq Ahmad Rather
- Department of Chemical Engineering National Institute of Technology Srinagar J&K 190006 India
| |
Collapse
|
11
|
Alam J, Shukla AK, Ansari MA, Ali FAA, Alhoshan M. Dye Separation and Antibacterial Activities of Polyaniline Thin Film-Coated Poly(phenyl sulfone) Membranes. MEMBRANES 2020; 11:25. [PMID: 33383729 PMCID: PMC7823579 DOI: 10.3390/membranes11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (B R) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The B R values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.
Collapse
Affiliation(s)
- Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Fekri Abdulraqeb Ahmed Ali
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
- K. A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
A Hemdan B, Azab El-Liethy M, El-Taweel GE. The destruction of Escherichia coli adhered to pipe surfaces in a model drinking water distribution system via various antibiofilm agents. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2155-2167. [PMID: 32621531 DOI: 10.1002/wer.1388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 05/06/2023]
Abstract
The aim of the study is to estimate the effectiveness of three antibiofilm agents against Escherichia coli biofilm that formed in six different types of pipelines. A laboratory-scale water system was built for this work to allow for the creation of biofilm in the pipelines studied. The level of the growth rate of E. coli biofilm cells was monitored over 90 days on those tested pipe materials. The results of bacterial cell densities displayed that the highest biofilm growth was observed in the biofilm formed on the iron (Fe) pipe. In contrast, the biofilm formation rate was significantly lower on copper (Cu) pipe compared to other materials. Three antibiofilm agents, including chlorine, silver ions (Ag+ ), and silver nanoparticles (AgNPs), were employed to eradicate the biofilm cells. E. coli counts indicated that AgNPs are more efficient in destructing any formed biofilm cells on all tested materials. At the same time, the chlorine was only useful in the case of biofilm developed on plastic and Cu. However, the antibiofilm efficiency of Ag+ performs similarly to chlorine against E. coli biofilm cells. Ultimately, AgNPs are considred the most powerful antibiofilm agent among the other agents toward the biofilm cells in their maturation stage, which offers an encouraging way for the long-term functioning of water systems. PRACTITIONER POINTS: The growth rate of E. coli biofilm cells was investigated on different materials. The count of biofilm cells developed on iron pipes was higher than other materials. The E. coli biofilm on iron pipe could resist chlorine and AgNPs to a large extent. The developed biofilm on copper pipe was more sensitive to chlorine, Ag+ . and AgNPs. The biofilm cells could be easily eradicated from plastic-based materials with all tested disinfectants.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, Giza, Egypt
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | - Gamila E El-Taweel
- Water Pollution Research Department, National Research Centre, Giza, Egypt
| |
Collapse
|