1
|
Zhao B, Xiong CR, Liu Y, Yu QC, Chen X. Rapid detection of SARS-CoV-2 spike protein using a magnetic-assisted electrochemical biosensor based on functionalized CoFe 2O 4 magnetic nanomaterials. Talanta 2024; 274:125986. [PMID: 38537348 DOI: 10.1016/j.talanta.2024.125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
The outbreak of novel coronavirus pneumonia (COVID-19) in 2019 has garnered widespread attention. The virus exhibits high contagiousness, and in certain cases, it can lead to recurrent infections. Therefore, it is imperative to develop portable, sensitive, and accurate sensors to promptly detect infected individuals, control the virus's transmission, and determine suitable treatment strategies. In this study, we proposed a magnetically-assisted method employing CFO@CS-Au MNP as the substrate material, which was functionalized with human angiotensin-converting enzyme (ACE2) for efficient capture of SARS-CoV-2 spike protein in solution. Subsequently, the captured protein was sensitively detected through differential pulse voltammetry (DPV) electrical analysis. The linear detection range of the labeled GCE/MNP/GA/ACE2/BSA electrochemical sensor is from 1 pg/mL to 10 μg/mL, with a minimum detection limit of 0.15 pg/mL. Furthermore, the fabricated GCE/MNP/GA/ACE2/BSA sensor achieved satisfactory recoveries of SARS-CoV-2 spike protein in saliva and nasal swab samples within 10 min. These results indicate that this magnetically-assisted biosensor has established a solid foundation for the swift on-site detection of COVID-19.
Collapse
Affiliation(s)
- Bing Zhao
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Chan-Ru Xiong
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Yao Liu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qing-Cai Yu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Xing Chen
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
2
|
Zuhra Z, Li S, Xie G, Wang X. Soot Erased: Catalysts and Their Mechanistic Chemistry. Molecules 2023; 28:6884. [PMID: 37836727 PMCID: PMC10574243 DOI: 10.3390/molecules28196884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Soot formation is an inevitable consequence of the combustion of carbonaceous fuels in environments rich in reducing agents. Efficient management of pollution in various contexts, such as industrial fires, vehicle engines, and similar applications, relies heavily on the subsequent oxidation of soot particles. Among the oxidizing agents employed for this purpose, oxygen, carbon dioxide, water vapor, and nitrogen dioxide have all demonstrated effectiveness. The scientific framework of this research can be elucidated through the following key aspects: (i) This review situates itself within the broader context of pollution management, emphasizing the importance of effective soot oxidation in reducing emissions and mitigating environmental impacts. (ii) The central research question of this study pertains to the identification and evaluation of catalysts for soot oxidation, with a specific emphasis on ceria-based catalysts. The formulation of this research question arises from the need to enhance our understanding of catalytic mechanisms and their application in environmental remediation. This question serves as the guiding principle that directs the research methodology. (iii) This review seeks to investigate the catalytic mechanisms involved in soot oxidation. (iv) This review highlights the efficacy of ceria-based catalysts as well as other types of catalysts in soot oxidation and elucidate the underlying mechanistic strategies. The significance of these findings is discussed in the context of pollution management and environmental sustainability. This study contributes to the advancement of knowledge in the field of catalysis and provides valuable insights for the development of effective strategies to combat air pollution, ultimately promoting a cleaner and healthier environment.
Collapse
Affiliation(s)
- Zareen Zuhra
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Li
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| | - Guanqun Xie
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| | - Xiaoxia Wang
- Department of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; (Z.Z.); (S.L.); (X.W.)
| |
Collapse
|
3
|
Kang Y, Masud MK, Guo Y, Zhao Y, Nishat ZS, Zhao J, Jiang B, Sugahara Y, Pejovic T, Morgan T, Hossain MSA, Li H, Salomon C, Asahi T, Yamauchi Y. Au-Loaded Superparamagnetic Mesoporous Bimetallic CoFeB Nanovehicles for Sensitive Autoantibody Detection. ACS NANO 2023; 17:3346-3357. [PMID: 36744876 DOI: 10.1021/acsnano.2c07694] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Construction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.1 nm) via the galvanic replacement reaction. The prepared Au-CoFeB possessed high saturation magnetization as well as uniform and large open mesopores (∼12.5 nm), which provided ample accessibility to biomolecules, such as nucleic acids, enzymes, proteins, and antibodies. Through this distinctive combination of superparamagnetism (CoFeB) and biofavorability (Au), the resulting Au-CoFeB was employed as a dispersible nanovehicle for the direct capture and isolation of p53 autoantibody from serum samples. Highly sensitive detection of the autoantibody was achieved with a limit of detection of 0.006 U/mL, which was 50 times lower than that of the conventional p53-ELISA kit-based detection system. Our assay is capable of quantifying differential expression patterns for detecting p53 autoantibodies in ovarian cancer patients. This assay provides a rapid, inexpensive, and portable platform with the potential to detect a wide range of clinically relevant protein biomarkers.
Collapse
Affiliation(s)
- Yunqing Kang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mostafa Kamal Masud
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yanna Guo
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Terry Morgan
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Preparation of Cordierite Monolith Catalysts with the Coating of K-Modified Spinel MnCo2O4 Oxide and Their Catalytic Performances for Soot Combustion. Catalysts 2022. [DOI: 10.3390/catal12030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diesel engines are important for heavy-duty vehicles. However, particulate matter (PM) released from diesel exhaust should be eliminated. Nowadays, catalytic diesel particulate filters (CDPF) are recognized as a promising technology. In this work, a series of monolith Mn1−nKnCo2O4 catalysts were prepared by the simple citric acid method. The as-prepared catalysts displayed good catalytic performance for soot combustion and the Mn0.7K0.3Co2O4 catalyst gave the best catalytic performance among all the prepared samples. The T10 and Tm of Mn0.7K0.3Co2O4-HC catalyst for soot combustion are 310 and 439 °C, respectively. The physical and chemical properties of catalysts were characterized by means of SEM, XPS, H2-TPR, Raman and other techniques. The characterization results indicate that K substitution is favorable for the formation of oxygen vacancies, enhancing the mobility of active oxygen species, and improving the redox properties and so on. In-situ Raman results prove that the strength of Co-O bonds in the catalysts became weak during the reaction at high temperatures. In addition, SEM and ultrasonic test results show that the peeling rate of the coat-layer is less than 5%. The as-prepared catalysts can be taken as one kind of candidate catalyst for promising application in soot combustion because of its facile synthesis, low cost and high catalytic activity.
Collapse
|
5
|
Fu M, Li M, Zhao Y, Bai Y, Fang X, Kang X, Yang M, Wei Y, Xu X. A study on the high efficiency reduction of p-nitrophenol (4-NP) by a Fe(OH) 3/Fe 2O 3@Au composite catalyst. RSC Adv 2021; 11:26502-26508. [PMID: 35479987 PMCID: PMC9037387 DOI: 10.1039/d1ra04073a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Precious metal nanometric catalysts are widely used in the removal of harmful substances. In the process of synthesis and catalytic reaction, it is particularly important to study green and simple synthesis methods and high catalytic efficiency. In this paper, a green one-step method was used to synthesize the Fe(OH)3/Fe2O3@Au composite catalyst, in which Au was single atom-dispersed. The removal of 4-nitrophenol (4-NP), a typical dangerous chemical widely existing in factory waste gas, waste water and automobile exhaust gas, was catalysed by Fe(OH)3/Fe2O3@Au. The catalytic performance of Fe(OH)3/Fe2O3@Au with different synthesis conditions (different amounts of MES, NaBH4, FeSO4, Au and Pt) on the 4-NP reduction reaction were systematically studied. Finally, the stability and recyclability of Fe(OH)3/Fe2O3@Au composite nanocatalyst were investigated thoroughly.
Collapse
Affiliation(s)
- Meirong Fu
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Mingqiang Li
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Yingying Zhao
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Yunxiang Bai
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Xingzhong Fang
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Xiaolong Kang
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Min Yang
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Yanping Wei
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| | - Xia Xu
- College of Science, Gansu Agricultural University No. 1 Yingmen Village Lanzhou 730070 P. R. China
| |
Collapse
|
6
|
Hybrid Nanoparticles Based on Cobalt Ferrite and Gold: Preparation and Characterization. METALS 2021. [DOI: 10.3390/met11050705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the past few decades, hybrid nanoparticles (HNPs) based on a magnetic material and gold have attracted interest for applications in catalysis, diagnostics and nanomedicine. In this paper, magnetic CoFe2O4/Au HNPs with an average particle size of 20 nm, decorated with 2 nm gold clusters, were prepared using methionine as a reducer and an anchor between CoFe2O4 and gold. The methionine was used to grow the Au clusters to a solid gold shell (up to 10 gold deposition cycles). The obtained nanoparticles (NPs) were studied by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy techniques. The TEM images of the obtained HNPs showed that the surface of cobalt ferrite was covered with gold nanoclusters, the size of which slightly increased with an increase in the number of gold deposition cycles (from 2.12 ± 0.15 nm after 1 cycle to 2.46 ± 0.13 nm after 10 cycles). The density of the Au clusters on the cobalt ferrite surface insignificantly decreased during repeated stages of gold deposition: 21.4 ± 2.7 Au NPs/CoFe2O4 NP after 1 cycle, 19.0 ± 1.2 after 6 cycles and 18.0 ± 1.4 after 10 cycles. The magnetic measurements showed that the obtained HNPs possessed typical ferrimagnetic behavior, which corresponds to that of CoFe2O4 nanoparticles. The toxicity evaluation of the synthesized HNPs on Chlorella vulgaris indicated that they can be applied to biomedical applications such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging and biosensing.
Collapse
|