1
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Baran T, Visibile A, Busch M, He X, Wojtyla S, Rondinini S, Minguzzi A, Vertova A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021; 26:7271. [PMID: 34885863 PMCID: PMC8658916 DOI: 10.3390/molecules26237271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.
Collapse
Affiliation(s)
- Tomasz Baran
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Alberto Visibile
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden;
| | - Michael Busch
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland;
| | - Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Szymon Wojtyla
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Sandra Rondinini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| |
Collapse
|
3
|
Vyas Y, Chundawat P, Dharmendra, Punjabi PB, Ameta C. Green and Facile Synthesis of Luminescent CQDs from Pomegranate Peels and its Utilization in the Degradation of Azure B and Amido Black 10B by Decorating it on CuO Nanorods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yogeshwari Vyas
- Department of Chemistry Photochemistry Laboratory University College of Science M. L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Priyanka Chundawat
- Department of Chemistry Photochemistry Laboratory University College of Science M. L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Dharmendra
- Department of Chemistry Photochemistry Laboratory University College of Science M. L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Pinki B. Punjabi
- Department of Chemistry Photochemistry Laboratory University College of Science M. L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Chetna Ameta
- Department of Chemistry Photochemistry Laboratory University College of Science M. L. Sukhadia University Udaipur 313001 (Raj. INDIA
| |
Collapse
|
4
|
Karimi Estahbanati MR, Feilizadeh M, Attar F, Iliuta MC. Current Developments and Future Trends in Photocatalytic Glycerol Valorization: Photocatalyst Development. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M. R. Karimi Estahbanati
- Department of Chemical Engineering, Université Laval, Québec, 1065 Av. De la Médecine,Québec G1 V 0A6, Canada
| | - Mehrzad Feilizadeh
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Farid Attar
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Maria C. Iliuta
- Department of Chemical Engineering, Université Laval, Québec, 1065 Av. De la Médecine,Québec G1 V 0A6, Canada
| |
Collapse
|