1
|
Gao R, Zhao Y, Chen L, Zhang T, Miao Y, Zhou Y, Song S. Effect of exfoliation degree on the performance of montmorillonite nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Gao Y, Wang Y, Chen C, Zhou J, Cheng Y, Shi L. Preparation of Montmorillonite Nanosheets with a High Aspect Ratio through Heating/Rehydrating and Gas-Pushing Exfoliation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10520-10529. [PMID: 35981283 DOI: 10.1021/acs.langmuir.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Montmorillonite (MMT) is an abundant silicate mineral with ultrahigh stability. The exfoliation of stacked MMT into high-aspect-ratio nanosheets is of crucial importance for various applications such as toxic gas suppression, barrier property enhancement, flame retardancy, and ion conduction. In this work, we develop a new heating/rehydrating and gas-pushing method that can successfully exfoliate MMT into nanosheets with aspect ratios (600-5000) far higher than the currently reported values (1-120). The MMT first goes through a "starvation pretreatment" under different heating temperatures to improve its hydrophilicity and is then rehydrated in a hydrogen peroxide solution. The hydrogen peroxide in the MMT interlayer space can decompose into water and oxygen bubbles, thus finally leading to the exfoliation via gas-pushing while preserving the large lateral size (mainly in the range of 1-6 μm) of the nanosheets. By changing the pretreatment temperature and pH value of the hydrogen peroxide solution, the exfoliation performance can be tuned. This simple and low-cost exfoliation method is promising to achieve the mass production of MMT nanosheets with a high aspect ratio and may promote its application in various fields such as energy conversion, drug delivery, and photocatalysis.
Collapse
Affiliation(s)
- Yushuan Gao
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yindong Wang
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Chengxiang Chen
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Jun Zhou
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Yonghong Cheng
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Le Shi
- Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| |
Collapse
|
3
|
Chen XX, Liu JH, Kurniawan A, Li KJ, Zhou CH. Inclusion of organic species in exfoliated montmorillonite nanolayers towards hierarchical functional inorganic-organic nanostructures. SOFT MATTER 2021; 17:9819-9841. [PMID: 34698330 DOI: 10.1039/d1sm00975c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Montmorillonite (Mt) can readily undergo spontaneous delamination or exfoliation into nanolayers by various physical and chemical processes, which allow various strategies to engineer hierarchical functional inorganic-organic nanostructures. This review aims to discuss the recent progress in the liquid-phase exfoliation of Mt into individual nanolayers and the inclusion chemistry of functional organic species, ions, or molecules into the exfoliated Mt nanolayers to produce hierarchical functional inorganic-organic nanostructures. The exfoliation methods include mechanical force, ultrasonication, and intercalation-assisted exfoliation. Techniques for quickly assessing the quality of the exfoliated Mt nanolayers are still needed. Layer-by-layer (LbL) deposition, template, and evaporation-induced inclusions are examined to fabricate hierarchical Mt-organic species nanocomposites with unique functionalities and properties. The nanocomposites can be produced as multilayered porous films, brick-and-mortar coatings, hydrogels with a house-of-cards structure, core-shell materials, and hollow and mesoporous spherical nanocomposites, which exhibit significant potential for adsorption, catalysis, targeted delivery and controlled drug release, highly sensitive sensors, flame retardant coatings, and thermal energy storage and release (i.e. phase change materials). Finally, the challenges and prospects for the future development of hierarchical nanocomposites of exfoliated Mt nanolayers and organic species, particularly in hierarchical supramolecular nanostructured composites, are highlighted.
Collapse
Affiliation(s)
- Xi Xi Chen
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|