1
|
Govindasamy B. Multifaceted toxicity assessment of Au, Ag, and TiO2 nanoparticles synthesized by quorum quenching bacterium Salmonella bongori: Impact on bacterial pathogens, cancer cells, mosquitoes, zebrafish, and brine shrimp. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 189:960-976. [DOI: 10.1016/j.psep.2024.06.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Xi Y, Ma R, Li S, Liu G, Liu C. Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants. Vaccines (Basel) 2024; 12:764. [PMID: 39066402 PMCID: PMC11281565 DOI: 10.3390/vaccines12070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
COVID-19, generated by SARS-CoV-2, has significantly affected healthcare systems worldwide. The epidemic has highlighted the urgent need for vaccine development. Besides the conventional vaccination models, which include live-attenuated, recombinant protein, and inactivated vaccines, nanovaccines present a distinct opportunity to progress vaccine research and offer convenient alternatives. This review highlights the many widely used nanoparticle vaccine vectors, outlines their benefits and drawbacks, and examines recent developments in nanoparticle vaccines to prevent SARS-CoV-2. It also offers a thorough overview of the many advantages of nanoparticle vaccines, including an enhanced host immune response, multivalent antigen delivery, and efficient drug delivery. The main objective is to provide a reference for the development of innovative antiviral vaccines.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- China Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
3
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
4
|
Chavda VP, Apostolopoulos V. COVID-19 vaccine design and vaccination strategy for emerging variants. Expert Rev Vaccines 2022; 21:1359-1361. [PMID: 35949150 DOI: 10.1080/14760584.2022.2112571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Vu NN, Venne C, Ladhari S, Saidi A, Moskovchenko L, Lai TT, Xiao Y, Barnabe S, Barbeau B, Nguyen-Tri P. Rapid Assessment of Biological Activity of Ag-Based Antiviral Coatings for the Treatment of Textile Fabrics Used in Protective Equipment Against Coronavirus. ACS APPLIED BIO MATERIALS 2022; 5:3405-3417. [PMID: 35776851 DOI: 10.1021/acsabm.2c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants have rapidly spread worldwide, causing coronavirus disease (COVID-19) with numerous infected cases and millions of deaths. Therefore, developing approaches to fight against COVID-19 is currently the most priority goal of the scientific community. As a sustainable solution to stop the spread of the virus, a green dip-coating method is utilized in the current work to prepare antiviral Ag-based coatings to treat cotton and synthetic fabrics, which are the base materials used in personal protective equipment such as gloves and gowns. Characterization results indicate the successful deposition of silver (Ag) and stabilizers on the cotton and polypropylene fiber surface, forming Ag coatings. The deposition of Ag and stabilizers on cotton and etched polypropylene (EPP) fabrics is dissimilar due to fiber surface behavior. The obtained results of biological tests reveal the excellent antibacterial property of treated fabrics with large zones of bacterial inhibition. Importantly, these treated fabrics exhibit an exceptional antiviral activity toward human coronavirus OC43 (hCoV-OC43), whose infection could be eliminated up to 99.8% when it was brought in contact with these fabrics after only a few tens of minutes. Moreover, the biological activity of treated fabrics is well maintained after a long period of up to 40 days of post-treatment.
Collapse
Affiliation(s)
- Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Camille Venne
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Alireza Saidi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada.,Institut de recherche Robert-Sauvé en santé et en Sécurité du travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, Quebec H3A 3C2, Canada
| | - Lana Moskovchenko
- NanoBrand Inc., 230 Bernard-Belleau, suite 123, Laval, Quebec H7V 4A9, Canada
| | - Thanh Tung Lai
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Yong Xiao
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, avenue du Président-Kennedy, Montréal, Quebec H2X 1Y4, Canada
| | - Simon Barnabe
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| | - Benoit Barbeau
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, avenue du Président-Kennedy, Montréal, Quebec H2X 1Y4, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Bd des Forges, Trois-Rivières, Quebec G8Z 4M3, Canada
| |
Collapse
|