1
|
Ma D, Tang J, He G, Pan S. Investigation of the Photocatalytic Performance, Mechanism, and Degradation Pathways of Rhodamine B with Bi 2O 3 Microrods under Visible-Light Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:957. [PMID: 38399207 PMCID: PMC10890279 DOI: 10.3390/ma17040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
In the present work, the photodegradation of Rhodamine B with different pH values by using Bi2O3 microrods under visible-light irradiation was studied in terms of the dye degradation efficiency, active species, degradation mechanism, and degradation pathway. X-ray diffractometry, polarized optical microscopy, scanning electron microscopy, fluorescence spectrophotometry, diffuse reflectance spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectrophotometry, total organic carbon, and liquid chromatography-mass spectroscopy analysis techniques were used to analyze the crystal structure, morphology, surface structures, band gap values, catalytic performance, and mechanistic pathway. The photoluminescence spectra and diffuse reflectance spectrum (the band gap values of the Bi2O3 microrods are 2.79 eV) reveals that the absorption spectrum extended to the visible region, which resulted in a high separation and low recombination rate of electron-hole pairs. The photodegradation results of Bi2O3 clearly indicated that Rhodamine B dye had removal efficiencies of about 97.2%, 90.6%, and 50.2% within 120 min at the pH values of 3.0, 5.0, and 7.0, respectively. In addition, the mineralization of RhB was evaluated by measuring the effect of Bi2O3 on chemical oxygen demand and total organic carbon at the pH value of 3.0. At the same time, quenching experiments were carried out to understand the core reaction species involved in the photodegradation of Rhodamine B solution at different pH values. The results of X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometer analysis of pre- and post-Bi2O3 degradation showed that BiOCl was formed on the surface of Bi2O3, and a BiOCl/Bi2O3 heterojunction was formed after acid photocatalytic degradation. Furthermore, the catalytic degradation of active substances and the possible mechanism of the photocatalytic degradation of Rhodamine B over Bi2O3 at different pH values were analyzed based on the results of X-ray diffractometry, radical capture, Fourier-transform infrared spectroscopy, total organic carbon analysis, and X-ray photoelectron spectroscopy. The degradation intermediates of Rhodamine B with the Bi2O3 photocatalyst in visible light were also identified with the assistance of liquid chromatography-mass spectroscopy.
Collapse
Affiliation(s)
- Dechong Ma
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Jiawei Tang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Guowen He
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| | - Sai Pan
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Hunan City University, Yiyang 413000, China
| |
Collapse
|
2
|
Sharma A, Sharma S, Kumar N, Diery WA, Moujaes EA, Tahir M, Singh P. Co +2, Ni +2 and Cu +2 incorporated Bi 2O 3 nano photocatalysts: Synthesis, DFT analysis of band gap modification, adsorption and photodegradation analysis of rhodamine B and Triclopyr. ENVIRONMENTAL RESEARCH 2023; 233:116478. [PMID: 37348633 DOI: 10.1016/j.envres.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
This study deals with the fabrication of metal ion (M = Co+2, Ni+2, and Cu+2) doped- Bi2O3 photocatalysts by solution combustion method. All the synthesized materials were characterized and analysed with the help of XRD, FESEM, EDX, HRTEM, UVDRS, Zeta potential, PL, and LCMS techniques for the structural, morphological, surface charge, optical and degradation pathways characteristics. Synthesized compounds were used for the decontamination (adsorption and degradation) of two organic pollutants namely Rhodamine B and Triclopyr. Adsorption aspects of the pollutants were studied in terms of different isotherm, kinetic and thermodynamic models. Adsorption phenomenon was best fitted with the Freundlich (R2 = 0.992) and Langmuir isotherm (R2 = 0.999) models along with pseudo second order model of kinetics for RhB and TC, respectively. Moreover, the thermodynamic parameters indicated exothermic and endothermic adsorption (ΔH ° (-7.19 kJ/mol) for RhB) and (ΔH ° (52.335 kJ/mol) for TC), respectively. Evaluated negative values of ΔG ° indicated spontaneous adsorption with most favourable at 298 K and 318 K for both the pollutants (RhB and TC) respectively. Modification with metal ions significantly improved the removal efficiency of pure Bi2O3 photocatalyst and followed the trend Co+2/Bi2O3 > Ni+2/Bi2O3 > Cu+2/Bi2O3 > Bi2O3. DFT calculations demonstrate that amongst the doped materials, only Co+2/Bi2O3 is characterized by an indirect band gap; which exhibited efficacious photocatalytic activity. Besides, the highest degradation efficiency was obtained in the case of Co+2/Bi2O3 (2 mol %); being 99.80% for RhB in 30 min and 98.50% for TC in 60 min, respectively. The doped nanostructures lead to higher absorption of visible light and more separation of light-induced charged carriers. Effect of pH of the reaction medium and role of reactive oxygen species was also examined. Finally, a probable mechanism of charge transfer and degradation of the pollutants was also presented.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Shankar Sharma
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Naveen Kumar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India.
| | - W A Diery
- Physics Department, Faculty of Science, King AbdulAziz University, 21589, Jeddah, Saudi Arabia
| | - Elie A Moujaes
- Physics Department, Federal University of Rondônia, Porto Velho, 76801-974, Brazil
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
3
|
Gan C, Tuo B, Wang J, Tang Y, Nie G, Deng Z. Photocatalytic degradation of reactive brilliant blue KN-R by Ti-doped Bi 2O 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34338-34349. [PMID: 36512283 DOI: 10.1007/s11356-022-24632-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, different compositions of Ti-doped Bi2O3 photocatalytic materials were prepared by chemical solution decomposition method. It was used to degrade reactive brilliant blue KN-R, and then characterized by XRD, SEM, UV-vis DRS, XPS, photocurrent, and other detection methods. The results show that when the catalyst dosage is 1.0 g/L and the initial concentration of reactive brilliant blue KN-R is 20 mg/L, the degradation rate of pure Bi2O3 to reactive brilliant blue KN-R is 75.30%; the Ti doping amount is 4% (4Ti/Bi2O3), 4Ti/Bi2O3 had the best degradation effect on reactive brilliant blue KN-R, and the degradation rate could reach 93.27%. When 4Ti/Bi2O3 was reused for 4 times, the degradation rate of reactive brilliant blue KN-R only decreased by 6.91%. Doping Ti can inhibit the growth of Bi2O3 grains, making the XRD peak of Ti/Bi2O3 material wider. The pure Bi2O3 particles are larger and the surface is smooth. With the increase of Ti doping content, the surface of Ti/Bi2O3 material grows from roughness to nanofibrous Bi4Ti3O12. The visible light absorption performance and electron separation and transfer ability of Bi2O3 are significantly improved by doping Ti ions. The band gap is reduced from 2.81 to 2.75 eV. In conclusion, doping Ti enhances the visible light absorption and electron separation and transfer capabilities of Bi2O3, reduces the band gap, and improves the surface morphology, which makes Bi2O3 have higher photocatalytic performance.
Collapse
Affiliation(s)
- Cheng Gan
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
| | - Biyang Tuo
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China.
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China.
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China.
| | - Jianli Wang
- College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou, 412000, China
| | - Yun Tang
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| | - Guanghua Nie
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| | - Zhengbin Deng
- College of Mining, Guizhou University, Guiyang, 550025, People's Republic of China
- GuiZhou Key Laboratory of Comprehensive Utilization of Non-Metallic Mineral Resources, Guiyang, 550025, People's Republic of China
- National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Re-Sources From Karst Areas, Guiyang, 550025, People's Republic of China
| |
Collapse
|
4
|
Sharma A, Sharma S, Mphahlele-Makgwane MM, Mittal A, Kumari K, Kumar N. Polyaniline modified Cu2+-Bi2O3 nanoparticles: Preparation and photocatalytic activity for Rhodamine B degradation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Sharma S, Sharma A, Chauhan NS, Tahir M, Kumari K, Mittal A, Kumar N. TiO2/Bi2O3/PANI nanocomposite materials for enhanced photocatalytic decontamination of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|