1
|
Moqbel Hassan Alzubaydi N, Oun Ali Z, Al-Asadi S, Al-Kahachi R. Design and characterization of a multi-epitope vaccine targeting Chlamydia abortus using immunoinformatics approach. J Biomol Struct Dyn 2024; 42:6660-6677. [PMID: 37774751 DOI: 10.1080/07391102.2023.2240891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 10/01/2023]
Abstract
Chlamydiosis is a widespread ailment affecting humans, livestock, and wildlife, caused by C. abortus, a member of the Chlamydia genus. This disease leads to reproductive disorders in bovines and poses a zoonotic risk, resulting in adverse outcomes such as abortion, stillbirths, weak offspring, endometritis, repeat breeding, and perinatal mortality. However, current chlamydiosis vaccines have limitations in terms of safety, efficacy, and stability, necessitating the development of effective and safe alternatives. In this study, our objective was to design a multi-epitope vaccine (MEV) targeting all strains of C. abortus using bioinformatics and immunoinformatics approaches. We identified highly antigenic and non-allergic proteins (yidC, yajC, secY, CAB503, and CAB746) using VaxiJen and AlgPred tools. Physicochemical analyses and secondary structure predictions confirmed protein stability through ProtParam and SOPMA methods. Furthermore, we employed IEDB-AR, NETMHCpan, and ToxinPred2 tools to predict cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B-cell epitopes, resulting in the identification of conserved epitopes for further analysis. The MEV construct, consisting of 545 amino acids, incorporated the adjuvant Beta defensin-3, along with 9 CTL epitopes and 21 HTL epitopes linked by EAAAK, KK, and AAY linkers. We assessed the safety and immunogenicity of the vaccine through comprehensive evaluations of antigenicity, toxicity, allergenicity, and physicochemical properties. Structural stability and quality were examined using 3D modeling via the ab initio approach with the Robetta platform. Molecular docking analysis explored the compatibility of the MEV with Toll-like receptor 9 (TLR9) using ClusPro, while molecular dynamics simulation with the DESMOND Maestro software predicted the stability and flexibility of the docked complex. Despite promising in silico findings, further wet lab investigations are crucial to validate the safety and efficacy of the MEV. Successful development and validation of this MEV hold significant potential in combatting chlamydiosis in both animal and human populations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zainab Oun Ali
- Department of Radiology Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Sura Al-Asadi
- Department of Laboratory Techniques, College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Rusul Al-Kahachi
- Department of Scholarships and Cultural Relationship, Republic of Iraq Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| |
Collapse
|
2
|
Xiong N, Lv PJ, Song JW, Shen Q, Xue YP, Zheng YG. Engineering of a nitrilase through consensus sequence analysis and conserved site substitution to improve its thermostability and activity. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Wang L, Wang M, Shi X, Yang J, Qian C, Liu Q, Zong L, Liu X, Zhu Z, Tang D, Zhang X. Investigation into archaeal extremophilic lifestyles through comparative proteogenomic analysis. J Biomol Struct Dyn 2020; 39:7080-7092. [PMID: 32820705 DOI: 10.1080/07391102.2020.1808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Archaea are a group of primary life forms on Earth and could thrive in many unique environments. Their successful colonization of extreme niches requires corresponding adaptations at proteogenomic level in order to maintain stable cellular structures and active physiological functions. Although some studies have already investigated the extremophilic lifestyles of archaeal species based on genomic features and protein structures, there is a lack of comparative proteogenomic analysis in a large scale. In this study, we explored 686 high-quality archaeal genomes (proteomes) sourced from the Pathosystems Resource Integration Center (PATRIC) database. General patterns of genomic features such as genome size, coding capacity (coding genes and non-coding regions), and G + C contents were re-confirmed. Protein domain distribution patterns were then identified across archaeal species. Domains with unknown functions (DUFs) and mini proteins were investigated in terms of their distributions due to their importance in archaeal physiological functions. In addition, physicochemical properties of protein sequences, such as stability, hydrophobicity, isoelectric point, aromaticity and amino acid compositions in corresponding archaeal groups were compared. Unique features associated with extremophilic lifestyles were observed, which suggested that evolutionary adaptations to different extreme environments had intrinsic impacts on archaeal protein features. Taken together, this systematic study facilitates a better understanding of the mechanisms behind the extremophilic lifestyles of archaeal species, which will further contribute to the evolutionary explorations of archaeal adaptations both experimentally and theoretically in the future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengmeng Wang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyi Shi
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianye Yang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenlu Qian
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghua Liu
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lixin Zong
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daoquan Tang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Computer Science, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Thakur N, Sharma N, Kumar V, Bhalla TC. Computational Analysis of the Primary and Secondary Structure of Amidases in Relation to their pH Adaptation. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190718150627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Amidases are ubiquitous enzymes and biological functions of these enzymes
vary widely. They are considered to be synergistically involved in the synthesis of a wide variety of
carboxylic acids, hydroxamic acids and hydrazides, which find applications in commodity chemicals
synthesis, pharmaceuticals agrochemicals and wastewater treatments.
Methods:
They hydrolyse a wide variety of amides (short-chain aliphatic amides, mid-chain amides,
arylamides, α-aminoamides and α-hydroxyamides) and can be grouped on the basis of their catalytic
site and preferred substrate. Despite their economic importance, we lack knowledge as to how these
amidases withstand elevated pH and temperature whereas others cannot.
Results:
The present study focuses on the statistical comparison between the acid-tolerant, alkali tolerant
and neutrophilic organisms. In silico analysis of amidases of acid-tolerant, alkali tolerant and neutrophilic
organisms revealed some striking trends as to how amino acid composition varies significantly.
Statistical analysis of primary and secondary structure revealed amino acid trends in amidases of
these three groups of bacteria. The abundance of isoleucine (Ile, I) in acid-tolerant and leucine (Leu, L)
in alkali tolerant showed the aliphatic amino acid dominance in extreme conditions of pH in acidtolerant
and alkali tolerant amidases.
Conclusion:
The present investigation insights physiochemical properties and dominance of some crucial
amino acid residues in the primary and secondary structure of some amidases from acid-tolerant,
alkali tolerant and neutrophilic microorganisms.
Collapse
Affiliation(s)
- Neerja Thakur
- Bioinformatics Centre, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| | - Nikhil Sharma
- Bioinformatics Centre, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| | - Vijay Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| |
Collapse
|
6
|
In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Gupta P, Sreekrishnan TR, Shaikh ZA. Application of hybrid anaerobic reactor: Treatment of increasing cyanide containing effluents and microbial composition identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:448-456. [PMID: 30144783 DOI: 10.1016/j.jenvman.2018.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The study endeavors the anaerobic treatment of cyanide-containing effluents using the hybrid anaerobic reactor, with self-immobilized granules under high up-flow velocities. Comparison of one-year time-course analyses of HARs treating high strength effluents containing cyanide and control indicates the importance of wastewater characteristics in development and maintenance of microbiome. Efforts were directed towards associating process performance with microbial dynamics. Presence of cyanide results in the accumulation of intermediates paralleled with a drop in abundance of sensitive aceticlastic methanogens. HAR appear to have better resilience than other identified digesters because of shielding effects and enhanced granule-wastewater contact. The predominance of Methanobacteriales in the presence of cyanide can be linked to its tolerance. It was found that methane yield is positively correlated with abundance of aceticlastic guilds (R = 0.830, CI = 0.01). Tolerant bacterial groups were also identified. The study advances our knowledge related to less energy intensive technology with the focus on the development of efficient HAR.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Z A Shaikh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|