1
|
Ganesh SK, Devi CS. Exploring the interactions of rapamycin with target receptors in A549 cancer cells: insights from molecular docking analysis. J Cancer Res Clin Oncol 2025; 151:31. [PMID: 39762538 PMCID: PMC11703896 DOI: 10.1007/s00432-024-06072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1. Hence, to uncover the exact potential of rapamycin in cancer therapy, a series of cell culture and in silico studies were conducted to identify other receptors capable of binding to rapamycin. Through molecular docking and simulations, it was found that the receptors EGFR, FKBP12, MET, FGFR, ROS1 and ALK were capable of binding with rapamycin. The findings from the current study provides new insights in modern cancer research and therapy. This could also facilitate in understanding the possible action mechanisms of rapamycin in other diseases such as neurovegetative diseases, autoimmune diseases, etc.
Collapse
Affiliation(s)
- Sanjeev K Ganesh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Subathra Devi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
2
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
3
|
K Ganesh S, C SD. Formulation of cost-effective medium and optimization studies for enhanced production of rapamycin. Microb Cell Fact 2023; 22:189. [PMID: 37730584 PMCID: PMC10510133 DOI: 10.1186/s12934-023-02201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Enhancing rapamycin production using a cost-effective medium is crucial for wider accessibility, reduced manufacturing costs, sustainable pharmaceutical practices, and advancements in therapeutic applications. It promotes global health, biotechnological innovation, research collaboration, and societal well-being through affordable and effective treatments. This study focuses on the development of a novel cost-effective production medium for the synthesis of rapamycin from Streptomyces hygroscopicus. RESULTS In the initial screening, more rapamycin production was observed in medium A. Initially, the organism produced 10 µg/mL rapamycin. Based on the OFT results, a novel cost-effective medium composition was designed, incorporating soyabean, sugarcane juice, and dried tomato components. Using RSM, soyabean and tomato was found to be more significant in rapamycin production than sugarcane. In the optimized medium, the production of rapamycin increased significantly to 24 µg/mL. Furthermore, a comparative analysis of the growth kinetics between the production normal medium (referred to as production medium A) and the newly optimized cost-effective production medium revealed that the optimized cost-effective production medium significantly enhanced the production of rapamycin. CONCLUSION Overall, this study demonstrates the successful development of a cost-effective production medium for rapamycin synthesis from S. hygroscopicus. The findings highlight the potential of using a cost-effective medium to enhance the production of a valuable secondary metabolite, rapamycin, while reducing production costs.
Collapse
Affiliation(s)
- Sanjeev K Ganesh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Subathra Devi C
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Xu Y, Wang D, Lv Q, Fu P, Wang Y, Zhu W. Phaeochromycins I-K, Three Methylene-Bridged Dimeric Polyketides from Streptomyces sp. 166. ACS OMEGA 2023; 8:1542-1547. [PMID: 36643451 PMCID: PMC9835637 DOI: 10.1021/acsomega.2c07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Three new dimeric polyketides, i.e., phaeochromycins I-K (1-3, respectively) and a known polyketide phaeochromycin F (4), were isolated from the culture broth of a saline Qinghai-Tibet Plateau permafrost soil-derived Streptomyces sp. 166#. The structures were determined by analyzing one-dimensional and two-dimensional NMR as well as HRESIMS data. Compounds 2 and 3 exhibited a selective antiproliferative activity against H1299 and HUCCT1 cell lines, exhibiting IC50 values ranging from 8.83 to 10.52 μM.
Collapse
Affiliation(s)
- Yibo Xu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Dongyang Wang
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Qianqian Lv
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Peng Fu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Open
Studio for Druggability Research of Marine Natural Products, Laboratory
for Marine Drugs and Bioproducts, National
Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ying Wang
- College
of Life Science and Technology, China Pharmaceutical
University, Nanjing 210009, China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Open
Studio for Druggability Research of Marine Natural Products, Laboratory
for Marine Drugs and Bioproducts, National
Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
5
|
Tian J, Yang G, Gu Y, Sun X, Lu Y, Jiang W. Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Res 2020; 48:8188-8202. [PMID: 32672817 PMCID: PMC7430639 DOI: 10.1093/nar/gkaa602] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Quorum-sensing (QS) mediated dynamic regulation has emerged as an effective strategy for optimizing product titers in microbes. However, these QS-based circuits are often created on heterologous systems and require careful tuning via a tedious testing/optimization process. This hampers their application in industrial microbes. Here, we design a novel QS circuit by directly integrating an endogenous QS system with CRISPRi (named EQCi) in the industrial rapamycin-producing strain Streptomyces rapamycinicus. EQCi combines the advantages of both the QS system and CRISPRi to enable tunable, autonomous, and dynamic regulation of multiple targets simultaneously. Using EQCi, we separately downregulate three key nodes in essential pathways to divert metabolic flux towards rapamycin biosynthesis and significantly increase its titers. Further application of EQCi to simultaneously regulate these three key nodes with fine-tuned repression strength boosts the rapamycin titer by ∼660%, achieving the highest reported titer (1836 ± 191 mg/l). Notably, compared to static engineering strategies, which result in growth arrest and suboptimal rapamycin titers, EQCi-based regulation substantially promotes rapamycin titers without affecting cell growth, indicating that it can achieve a trade-off between essential pathways and product synthesis. Collectively, this study provides a convenient and effective strategy for strain improvement and shows potential for application in other industrial microorganisms.
Collapse
Affiliation(s)
- Jinzhong Tian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Gaohua Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xinqiang Sun
- XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
6
|
Kiki C, Rashid A, Wang Y, Li Y, Zeng Q, Yu CP, Sun Q. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121985. [PMID: 31911384 DOI: 10.1016/j.jhazmat.2019.121985] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 05/25/2023]
Abstract
Dissipation potential of four algae viz. Haematococcus pluvialis, Selenastrum capricornutum, Scenedesmus quadricauda and Chlorella vulgaris was investigated against ten antibiotics (sulfamerazine, sulfamethoxazole, sulfamonomethoxine, trimethoprim, clarithromycin, azithromycin, roxithromycin, lomefloxacin, levofloxacin and flumequine) in a series of synthetic wastewater batch culture experiments, maintained at 20, 50 and 100 μg L-1 initial concentration levels and incubated over a period of 40 days. Generally, the antibiotic removal was achieved with overall dissipation percentage (%) varying among the algal species and different antibiotics. Biodegradation was the major antibiotic removal mechanism from the dissolved fraction, with minor contributions of bioadsorption, bioaccumulation, and abiotic factors. The antibiotics dissipation followed the pseudo-first-order-kinetics with the fastest antibiotic degradation rate achieved by H. pluvialis. The Monod kinetics was successfully applied to explain the relationship between the algal growth and the removal of antibiotics and nutrients in the batch cultures. S. capricornutum and C. vulgaris showed more affinity for the macrolides and fluoroquinolones than sulfonamides, while, H. pluvialis and S. quadiricauda showed relatively higher preference for sulfonamides than the other antibiotic groups. A total of 10 transformation products were identified and the transformation pathway was proposed, accordingly. Most of the transformation products had lower toxicity compared with their parent antibiotics.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Yuwen Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Qiaoting Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
7
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
9
|
Dutta S, Bhunia B, Raju A, Maity N, Dey A. Enhanced rapamycin production through kinetic and purification studies by mutant strain of Streptomyces hygroscopicus NTG-30-27. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00767-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Dutta S, Basak B, Bhunia B, Sinha A, Dey A. Approaches towards the enhanced production of Rapamycin by Streptomyces hygroscopicus MTCC 4003 through mutagenesis and optimization of process parameters by Taguchi orthogonal array methodology. World J Microbiol Biotechnol 2017; 33:90. [PMID: 28390015 DOI: 10.1007/s11274-017-2260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
Abstract
The present research was conducted to define the approaches for enhanced production of rapamycin (Rap) by Streptomyces hygroscopicus microbial type culture collection (MTCC) 4003. Both physical mutagenesis by ultraviolet ray (UV) and chemical mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine (NTG) have been applied successfully for the improvement of Rap production. Enhancing Rap yield by novel sequential UV mutagenesis technique followed by fermentation gives a significant difference in getting economically scalable amount of this industrially important macrolide compound. Mutant obtained through NTG mutagenesis (NTG-30-27) was found to be superior to others as it initially produced 67% higher Rap than wild type. Statistical optimization of nutritional and physiochemical parameters was carried out to find out most influential factors responsible for enhanced Rap yield by NTG-30-27 which was performed using Taguchi orthogonal array approach. Around 72% enhanced production was achieved with nutritional factors at their assigned level at 23 °C, 120 rpm and pH 7.6. Results were analysed in triplicate basis where validation and purification was carried out using high performance liquid chromatography. Stability study and potency of extracted Rap was supported by turbidimetric assay taking Candida albicans MTCC 227 as test organism.
Collapse
Affiliation(s)
- Subhasish Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Bikram Basak
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology Agartala, Barjala, Tripura, 799055, India
| | - Ankan Sinha
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India
- Bioprocess Development Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Apurba Dey
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, 713209, India.
| |
Collapse
|
11
|
Yoo YJ, Kim H, Park SR, Yoon YJ. An overview of rapamycin: from discovery to future perspectives. J Ind Microbiol Biotechnol 2016; 44:537-553. [PMID: 27613310 DOI: 10.1007/s10295-016-1834-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
Rapamycin is an immunosuppressive metabolite produced from several actinomycete species. Besides its immunosuppressive activity, rapamycin and its analogs have additional therapeutic potentials, including antifungal, antitumor, neuroprotective/neuroregenerative, and lifespan extension activities. The core structure of rapamycin is derived from (4R,5R)-4,5-dihydrocyclohex-1-ene-carboxylic acid that is extended by polyketide synthase. The resulting linear polyketide chain is cyclized by incorporating pipecolate and further decorated by post-PKS modification enzymes. Herein, we review the discovery and biological activities of rapamycin as well as its mechanism of action, mechanistic target, biosynthesis, and regulation. In addition, we introduce the many efforts directed at enhancing the production of rapamycin and generating diverse analogs and also explore future perspectives in rapamycin research. This review will also emphasize the remarkable pilot studies on the biosynthesis and production improvement of rapamycin by Dr. Demain, one of the world's distinguished scientists in industrial microbiology and biotechnology.
Collapse
Affiliation(s)
- Young Ji Yoo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sung Ryeol Park
- Natural Products Discovery Institute, The Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, 18902, USA.
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|