1
|
Kaur N, Singh J, Sharma NR, Natt SK, Mohan A, Malik T, Girdhar M. Heavy metal contamination in wastewater-irrigated vegetables: assessing food safety challenges in developing Asian countries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40421542 DOI: 10.1039/d4em00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Vegetables are crucial for human nutrition, providing essential micronutrients and beneficial compounds. Heavy metal contamination of vegetables irrigated with wastewater poses a significant public health risk in developing Asian countries. This review analyses recent research on heavy metal accumulation in vegetables across India, Bangladesh, Pakistan, and China. Studies consistently report concerning levels of cadmium, lead, chromium, arsenic, nickel, and mercury in vegetables, often exceeding international safety standards. Leafy vegetables consistently show higher heavy metal accumulation compared to fruit and root vegetables. Within plant structures, roots generally contain higher heavy metal concentrations than edible parts, though this varies depending on the metal and plant species. Many studies report health risk indices exceeding safe limits, indicating potential non-carcinogenic and carcinogenic risks from chronic dietary exposure, with children at higher risk. The review highlights inadequate regulatory frameworks and enforcement mechanisms. A multi-faceted approach is urgently needed, encompassing improved wastewater treatment, best agricultural practices, rigorous monitoring, and public awareness campaigns. Future research directions are identified, including long-term health impact studies, development of cost-effective remediation techniques, and exploration of sustainable alternatives to wastewater irrigation. While wastewater irrigation addresses immediate water scarcity, it poses significant long-term food safety and public health risks. Integrated policies balancing water scarcity, agricultural productivity, and health risks are essential. This review underscores the pressing need for coordinated efforts from policymakers, researchers, and health officials to safeguard public health and ensure sustainable agriculture in developing Asian countries facing increasing urbanization and water scarcity.
Collapse
Affiliation(s)
- Navneet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jagdev Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
2
|
Flajšman M, Košmelj K, Grčman H, Ačko DK, Zupan M. Industrial hemp (Cannabis sativa L.)-a valuable alternative crop for growing in agricultural soils contaminated with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115414-115429. [PMID: 37884708 PMCID: PMC10682123 DOI: 10.1007/s11356-023-30474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Hemp (Cannabis sativa L.) is a multiuse plant, which has been abundantly studied for phytoremediation purposes in recent years. The majority of experiments were performed in greenhouses with potted plants where hemp showed promising results. Only few studies tested hemp on site in heavy metal-polluted agricultural soil in real environmental conditions and practical assessments of hemp phytoremediation feasibility are lacking. We conducted a comprehensive study using 2 legal industrial hemp varieties (Futura 75 and Tisza) at three differently polluted locations (heavily polluted location, HP; moderately polluted location, MP; and slightly polluted location, SP) in the heavy metal contaminated Celje valley in Slovenia and determined the content of Pb, Zn, and Cd in 5 plant organs/tissues. The yield of each organ/tissue was determined as well to enable us to calculate the phytoremediation potential (PP). On average, plants grown in the HP location accumulated the highest values of all examined elements, followed by plants from the MP location and plants from the SP location, showing that the content of heavy metals in soil influences the accumulation in plants. Accumulation of Pb/Zn/Cd by plant organs/tissues was distributed in the following order: inflorescences (Pb-4.10/Zn-92.8/Cd-0.50 mg/kg) > seeds (Pb-1.79/Zn-92.6/Cd-0.27 mg/kg) > roots (Pb-1.15/Zn-15.0/Cd-0.44 mg/kg) > stem bark (Pb-0.42/Zn-12.4/Cd-0.23 mg/kg) > stem woody core (Pb-0.34/Zn-4.6/Cd-0.15 mg/kg). The only exception was for Cd, where roots accumulated a higher value than seed, yet lower than inflorescences. PP was calculated by multiplying hemp tissue/organ yield by the relative concentrations of heavy metal. The highest PP for Pb and Cd were achieved at the HP location (3.80 and 0.23 g/ha/vegetation period). On the other hand, tissue/organ yield was more important for high PP of Zn, where the SP location reached the highest PP for Zn (148.5 g/ha/vegetation period) due to the highest yields. Only seeds from HP and MP locations accumulated a too high content of Pb; otherwise, all other fibers and seeds can be safely used in the textile and food industry. Results of this study showed that hemp cannot be considered an efficient plant for the phytomanagement of contaminated areas. Nevertheless, hemp cultivation in heavy metal-polluted agricultural soils seems feasible since the majority of tissues/organs were not contaminated and different products can be obtained from various parts of the hemp plant.
Collapse
Affiliation(s)
- Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia.
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Helena Grčman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Darja Kocjan Ačko
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| | - Marko Zupan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, 101 1000, Ljubljana, Slovenia
| |
Collapse
|
3
|
Seltenrich N. Untested, Unsafe? Cannabis Users Show Higher Lead and Cadmium Levels. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:94001. [PMID: 37747406 PMCID: PMC10519194 DOI: 10.1289/ehp13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
|
4
|
You M, Wang L, Zhou G, Wang Y, Wang K, Zou R, Cao W, Fan H. Effects of microbial agents on cadmium uptake in Solanum nigrum L. and rhizosphere microbial communities in cadmium-contaminated soil. Front Microbiol 2023; 13:1106254. [PMID: 36687578 PMCID: PMC9849675 DOI: 10.3389/fmicb.2022.1106254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Solanum nigrum L. (S. nigrum) and microbial agents are often used for the remediation of cadmium (Cd)-contaminated soil; however, no studies to date have examined the efficacy of using various microbial agents for enhancing the remediation efficiency of Cd-contaminated soil by S. nigrum. Here, we conducted greenhouse pot experiments to evaluate the efficacy of applying Bacillus megaterium (BM) along with citric acid (BM + CA), Glomus mosseae (BM + GM), and Piriformospora indica (BM + PI) on the ability of S. nigrum to remediate Cd-contaminated soil. The results showed that BM + GM significantly increased the Cd accumulation of each pot of S. nigrum by 104% compared with the control. Application of microbial agents changed the soil microbial communities. Redundancy analysis showed that the activities of Catalase (CAT) and urease (UE), soil organic matter, available N and total Cd were the main influencing factors. By constructing the microbial co-occurrence networks, the soil microbe was divided into four main Modules. BM + GM and BM + PI significantly increased the relative abundance of Module#1 and Module#3, respectively, when compared with the control. Additionally, Module#1 showed a significant positive correlation with translocation factor (TF), which could be regarded as the key microbial taxa. Further research found that Ascomycota, Glomeromycota, Proteobacteria, and Actinobacteria within Module#1 were also significantly correlated with TF, and these key species enriched in BM + GM. Overall, our findings indicate that the BM + GM treatment was the most effective for the remediation of Cd pollution. This treatment method may further affect the rhizosphere microbial community by affecting soil indicators, which might drive the formation of Module#1, thus greatly enhancing the Cd remediation capacity of S. nigrum.
Collapse
Affiliation(s)
- Meng You
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zou
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Weidong Cao, ✉
| | - Hongli Fan
- Key Laboratory of Plant Nutrition and Fertilizer, National Engineering Research Center of Arable Land Protection, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China,Hongli Fan, ✉
| |
Collapse
|
5
|
Stando K, Czyż A, Gajda M, Felis E, Bajkacz S. Study of the Phytoextraction and Phytodegradation of Sulfamethoxazole and Trimethoprim from Water by Limnobium laevigatum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16994. [PMID: 36554877 PMCID: PMC9779370 DOI: 10.3390/ijerph192416994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Phytoremediation is an environmentally friendly and economical method for removing organic contaminants from water. The purpose of the present study was to use Limnobium laevigatum for the phytoremediation of water from sulfamethoxazole (SMX) and trimethoprim (TRI) residues. The experiment was conducted for 14 days, in which the loss of the pharmaceuticals in water and their concentration in plant tissues was monitored. Determination of SMX and TRI was conducted using liquid chromatography coupled with tandem mass spectrometry. The results revealed that various factors affected the removal of the contaminants from water, and their bioaccumulation coefficients were obtained. Additionally, the transformation products of SMX and TRI were identified. The observed decrease in SMX and TRI content after 14 days was 96.0% and 75.4% in water, respectively. SMX removal mainly involved photolysis and hydrolysis processes, whereas TRI was mostly absorbed by the plant. Bioaccumulation coefficients of the freeze-dried plant were in the range of 0.043-0.147 for SMX and 2.369-2.588 for TRI. Nine and six transformation products related to SMX and TRI, respectively, were identified in water and plant tissues. The detected transformation products stemmed from metabolic transformations and photolysis of the parent compounds.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Aleksandra Czyż
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Magdalena Gajda
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
7
|
Hemp Cultivation in Soils Polluted by Cd, Pb and Zn in the Mediterranean Area: Sites Characterization and Phytoremediation in Real Scale Settlement. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polluting activities affect, directly or indirectly, large areas of agricultural lands. Metal polluted soils could be managed by phytoremediation using hemp (Cannabis sativa L.). To know the phytoremediation capability of industrial hemp in metal polluted soils under semiarid environments, an experimental project with the support of local farmers was conducted in Sardinia (Italy). This work was carried out in three main steps: (i) identification and selection of the study sites, (ii) field trials, at local farms, both on contaminated and non-polluted sites, (iii) evaluation of heavy metals contents accumulated in the different parts of the plants. Five study sites were chosen. Three of them were severely polluted by heavy metals. Concentrations of Zn and Cd in plants generally were positively correlated with soil content and were different in each part of the plant. The higher values of Zn and Cd were detected in leaves of plants grown in polluted sites (Zn > 950 mg kg−1 and Cd > 6.8 mg kg−1). High values of Pb were also detected in plants grown in non-contaminated soils: this contamination may be due to atmospheric deposition related to polluting sources far to the cultivation.
Collapse
|
8
|
Bengyella L, Kuddus M, Mukherjee P, Fonmboh DJ, Kaminski JE. Global impact of trace non-essential heavy metal contaminants in industrial cannabis bioeconomy. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1992444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Louis Bengyella
- Department of Plant Sciences, Pennsylvania State University, State College, PA, USA
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Piyali Mukherjee
- Department of Biotechnology, The University of Burdwan, Bardhhaman, West Bengal, India
| | - Dobgima J. Fonmboh
- Department of Nutrition, Food Science and Bioresource Technology, College of Technology, The University of Bamenda, Bambili, Cameroon
| | - John E. Kaminski
- Department of Plant Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
9
|
Grifoni M, Rosellini I, Petruzzelli G, Pedron F, Franchi E, Barbafieri M. Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47294-47305. [PMID: 33890221 DOI: 10.1007/s11356-021-14074-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Phytoextraction is currently investigated to effectively remediate soil contaminated by metals and provide highly competitive biomass for energy production. This research aimed to increase arsenic (As) removal from contaminated soil using industrial Cannabis sativa L., a suitable energy crop for biofuel production. Assisted phytoextraction experiments were conducted on a microcosm scale to explore the ability of two friendly treatments, sodium sulphate (SO4) and exogenous cytokinin (CK), in increasing As phytoextraction efficiency. The results showed that the treatments significantly increased As phytoextraction. Cytokinin was the most effective agent for effectively increasing translocation and the amount of As in aerial parts of C. sativa. In fact, the concentration of As in the shoots of CK-treated plants increased by 172% and 44% compared to untreated and SO4-treated plants, respectively. However, the increased As amount accumulated in C. sativa tissues due to the two treatments negatively affected plant growth. Arsenic toxicity caused a significant decrease in aerial C. sativa biomass treated with CK and SO4 of about 32.7% and 29.8% compared to untreated plants, respectively. However, for our research purposes, biomass reduction has been counterbalanced by an increase in As phytoextraction, such as to consider C. sativa and CK an effective combination for the remediation of As-contaminated soils. Considering that C. sativa has the suitable characteristics to provide valuable resources for bioenergy production, our work can help improve the implementation of a sustainable management model for As contaminated areas, such as phytoremediation coupled with bioenergy generation.
Collapse
Affiliation(s)
- Martina Grifoni
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Irene Rosellini
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Gianniantonio Petruzzelli
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Francesca Pedron
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Elisabetta Franchi
- Eni S.p.A., Renewable Energy & Environmental Laboratories, S. Donato Milanese, MI, Italy
| | - Meri Barbafieri
- National Research Council - Research Institute on Terrestrial Ecosystems, Section of Pisa, Via Moruzzi, 1, 56124, Pisa, Italy
| |
Collapse
|
10
|
Hemp-Based Phytoaccumulation of Heavy Metals from Municipal Sewage Sludge and Phosphogypsum Under Field Conditions. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to evaluate the ability of three hemp cultivars to accumulate heavy metals under sewage sludge (SS) and phosphogypsum (PG) application. The field study was carried out from 2014 to 2016 on Luvisol (loamy sand) in Poland. The experiment scheme included five treatments—T0: the control without fertilization, T1: 170 kg N (nitrogen) ha−1 from sewage sludge, T2: 170 kg N ha−1 from sewage sludge and 100 kg ha−1 of phosphogypsum, T3: 170 kg N ha−1 from sewage sludge and 500 kg ha−1 of phosphogypsum, and T4: 170 kg N ha−1 from sewage sludge and 1000 kg ha−1 of phosphogypsum. It was found that the application of municipal sewage sludge enriched the soil with the bioavailable forms of heavy metals to the greatest extent and contributed to the highest increase in their contents in vegetative and generative organs of hemp plants. These parameters showed a phosphogypsum dose-dependent decline, which could hinder the phytoextraction process. The greatest extractions of heavy metal(loid)s (HMs) from the soil treated with SS and PG were achieved by the Tygra variety, which had the highest bioconcentration factor (BCF) and biomass yield.
Collapse
|
11
|
Assessing potential of weeds (Acalypha indica and Amaranthus viridis) in phytoremediating soil contaminated with heavy metals-rich effluent. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Sarma ND, Waye A, ElSohly MA, Brown PN, Elzinga S, Johnson HE, Marles RJ, Melanson JE, Russo E, Deyton L, Hudalla C, Vrdoljak GA, Wurzer JH, Khan IA, Kim NC, Giancaspro GI. Cannabis Inflorescence for Medical Purposes: USP Considerations for Quality Attributes. JOURNAL OF NATURAL PRODUCTS 2020; 83:1334-1351. [PMID: 32281793 DOI: 10.1021/acs.jnatprod.9b01200] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is an active and growing interest in cannabis female inflorescence (Cannabis sativa) for medical purposes. Therefore, a definition of its quality attributes can help mitigate public health risks associated with contaminated, substandard, or adulterated products and support sound and reproducible basic and clinical research. As cannabis is a heterogeneous matrix that can contain a complex secondary metabolome with an uneven distribution of constituents, ensuring its quality requires appropriate sampling procedures and a suite of tests, analytical procedures, and acceptance criteria to define the identity, content of constituents (e.g., cannabinoids), and limits on contaminants. As an independent science-based public health organization, United States Pharmacopeia (USP) has formed a Cannabis Expert Panel, which has evaluated specifications necessary to define key cannabis quality attributes. The consensus within the expert panel was that these specifications should differentiate between cannabis chemotypes. Based on the secondary metabolite profiles, the expert panel has suggested adoption of three broad categories of cannabis. These three main chemotypes have been identified as useful for labeling based on the following cannabinoid constituents: (1) tetrahydrocannabinol (THC)-dominant chemotype; (2) intermediate chemotype with both THC and cannabidiol (CBD); and (3) CBD-dominant chemotype. Cannabis plants in each of these chemotypes may be further subcategorized based on the content of other cannabinoids and/or mono- and sesquiterpene profiles. Morphological and chromatographic tests are presented for the identification and quantitative determination of critical constituents. Limits for contaminants including pesticide residues, microbial levels, mycotoxins, and elemental contaminants are presented based on toxicological considerations and aligned with the existing USP procedures for general tests and assays. The principles outlined in this review should be able to be used as the basis of public quality specifications for cannabis inflorescence, which are needed for public health protection and to facilitate scientific research on cannabis safety and therapeutic potential.
Collapse
Affiliation(s)
- Nandakumara D Sarma
- Department of Dietary Supplements and Herbal Medicines, Science Division, United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, Maryland 20852, United States
| | - Andrew Waye
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | | | - Paula N Brown
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Sytze Elzinga
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Holly E Johnson
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Robin J Marles
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | | | - Ethan Russo
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Lawrence Deyton
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | | | | | - Joshua H Wurzer
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Ikhlas A Khan
- USP Cannabis Expert Panel, Rockville, Maryland 20852, United States
| | - Nam-Cheol Kim
- Department of Dietary Supplements and Herbal Medicines, Science Division, United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, Maryland 20852, United States
| | - Gabriel I Giancaspro
- Department of Dietary Supplements and Herbal Medicines, Science Division, United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, Maryland 20852, United States
| |
Collapse
|
13
|
Abdelkrim S, Jebara SH, Saadani O, Abid G, Taamalli W, Zemni H, Mannai K, Louati F, Jebara M. In situ effects of Lathyrus sativus- PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110260. [PMID: 32050135 DOI: 10.1016/j.ecoenv.2020.110260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Rehabilitation of heavy metals contaminated soils using association between legumes and beneficial rhizospheric microorganisms such as plant growth-promoting bacteria (PGPR) is a major challenge in agronomy. The present study focuses on assessing the impact of field inoculation with I1 (Rhizobium leguminosarum (M5) + Bacillus simplex + Luteibacter sp. + Variovorax sp.) and I5 (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) on growth and phytoremediation potential of Lathyrus sativus plants as well as soil quality and fertility. The experimentation was carried out in mine tailings of northern Tunisia. Obtained Results indicated that the in situ inoculation with I1 and I5 significantly increased the shoots (47% and 22%) and roots dry weights (22% and 29%), as well as nodules number (48% and 31%), respectively, compared to uninoculated plants. The maximum Pb accumulation in the above-ground tissue was recorded in plants inoculated with I5 (1180.85 mg kg-1 DW). At the same time, we noticed a reduction in total Pb and Cd in the rhizosphere of inoculated plots mainly in those inoculated with I5 reaching 46% and 61%, respectively, compared to uninoculated plots. Likewise, I5 inoculum significantly enhanced soil total nitrogen (35%) and available phosphorus (100%), as well as β-glucosidase (16%), urease (32%) and alkaline phosphatase (12%) activities. Here we demonstrate the usefulness of L. sativus inoculated with I5 inoculum formed by mixing efficient and heavy metals resistant PGPR to boost an efficient reclamation of Cd and Pb contaminated soils and, ultimately, to improve their quality and fertility.
Collapse
Affiliation(s)
- Souhir Abdelkrim
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia; National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Salwa Harzalli Jebara
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Omar Saadani
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Wael Taamalli
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Hassène Zemni
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Khediri Mannai
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Faten Louati
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia.
| |
Collapse
|
14
|
Unveiling the Potential of Novel Macrophytes for the Treatment of Tannery Effluent in Vertical Flow Pilot Constructed Wetlands. WATER 2020. [DOI: 10.3390/w12020549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phytoremediation potential of macrophytic species has made them an inevitable component of constructed wetlands (CWs) for the treatment of industrial effluents. The macrophytes must have tolerance for the harsh conditions imposed by effluents for an effective establishment of the CW system. In this context, the basic purpose of this work was to investigate the efficacy of five indigenous emergent macrophytes (Brachiaria mutica, Canna indica, Cyperus laevigatus, Leptochloa fusca, and Typha domingensis) for the remediation of tannery effluent in vertical subsurface flow CWs. The ability of each macrophytic species to tolerate pollution load and to remove pollutants from the effluent was assessed. The effect of tannery effluent on the survival and growth of macrophytes was also studied. The treated tannery effluent samples were analyzed for electrical conductivity (EC), pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), chlorides (Cl−), sulphates (SO42−), oil and grease, and Cr levels. All of the studied macrophytes significantly decreased the pollution load of tannery effluent, and the higher nutrient content of effluent stimulated their growth without any signs of negative health effects. Leptochloa fusca and T. domingensis performed better in removing pollutants and showed higher growth rates and biomass than other tested macrophytes and can be considered preferred species for use in CWs treating tannery effluent. Brachiaria mutica showed morphologically better results than C. indica and C. laevigatus.
Collapse
|
15
|
Penn A. Cannabinoids and Mental Health, Part 1: The Endocannabinoid System and Exogenous Cannabinoids. J Psychosoc Nurs Ment Health Serv 2019; 57:7-10. [PMID: 31461513 DOI: 10.3928/02793695-20190813-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increasing public acceptance of cannabis and the proliferation of cannabis products in the marketplace has coincided with more patients using the drug as a substitute for psychiatric medications or as an adjunctive treatment modality for psychiatric conditions, despite limited evidence of efficacy. With a goal of furthering harm-reduction efforts in psychiatric nursing, the current article reviews the fundamentals of the endocannabinoid system in humans and the exogenous phytocannabinoids that act on this regulatory neurotransmitter system. The basics of cannabis botany are also reviewed to help nurse clinicians understand the heterogeneous nature of cannabis products. This foundational knowledge will help improve clinical interactions with patients who use cannabis and provide the necessary understanding of cannabinoids needed to undertake further scientific query into their purported benefits in psychiatric disease states. [Journal of Psychosocial Nursing and Mental Health Services, 57(9), 7-10.].
Collapse
|
16
|
Tőzsér D, Tóthmérész B, Harangi S, Baranyai E, Lakatos G, Fülöp Z, Simon E. Remediation potential of early successional pioneer species Chenopodium album and Tripleurospermum inodorum. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.36.32503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Remediation with plants is a technology used to decrease soil or water contamination. In this study we assessed the remediation potential of two weed species (Chenopodium album and Tripleurospermum inodorum) in a moderately metal-contaminated area. Metal concentrations were studied in roots, stems and leaves, in order to assess correlations in metal concentrations between those in soil and plants. Furthermore, we calculated bioaccumulation factor (BAF), bioconcentration factor (BCF) and translocation factor (TF) values to study the accumulation of metals from soil to plants and translocation within plants. We found correlation in metal concentrations between soil and plants. The metal accumulation potential was low in both species, indicating low BAF and BCF values. In contrast, high TF values were found for Mn, Ni, Sr, Zn, Ba, Fe, Cu and Pb in C. album, and for Fe, Mn, Ni, Zn and Sr in T. inodorum. Our results demonstrated that the potential of C. album and T. inodorum might be limited in phytoextraction processes; however, when accumulated, metals are successfully transported to aboveground plant organs. Thus, to achieve the efficient remediation of metal-contaminated soils, removal of the aboveground plant organs is recommended, by which soil disturbance can also be avoided.
Collapse
|
17
|
Abstract
The mining industry is the major producer of acid mine drainage (AMD). The problem of AMD concerns at active and abandoned mine sites. Acid mine drainage needs to be treated since it can contaminate surface water. Constructed wetlands (CW), a passive treatment technology, combines naturally-occurring biogeochemical, geochemical, and physical processes. This technology can be used for the long-term remediation of AMD. The challenge is to overcome some factors, for instance, chemical characteristics of AMD such a high acidity and toxic metals concentrations, to achieve efficient CW systems. Design criteria, conformational arrangements, and careful selection of each component must be considered to achieve the treatment. The main objective of this review is to summarize the current advances, applications, and the prevalent difficulties and opportunities to apply the CW technology for AMD treatment. According to the cited literature, sub-surface CW (SS-CW) systems are suggested for an efficient AMD treatment. The synergistic interactions between CW components determine heavy metal removal from water solution. The microorganism-plant interaction is considered the most important since it implies symbiosis mechanisms for heavy metal removal and tolerance. In addition, formation of litter and biofilm layers contributes to heavy metal removal by adsorption mechanisms. The addition of organic amendments to the substrate material and AMD bacterial consortium inoculation are some of the strategies to improve heavy metal removal. Adequate experimental design from laboratory to full scale systems need to be used to optimize equilibria between CW components selection and construction and operational costs. The principal limitations for CW treating AMD is the toxicity effect that heavy metals produce on CW plants and microorganisms. However, these aspects can be solved partially by choosing carefully constructed wetlands components suitable for the AMD characteristics. From the economic point of view, a variety of factors affects the cost of constructed wetlands, such as: detention time, treatment goals, media type, pretreatment type, number of cells, source, and availability of gravel media, and land requirements, among others.
Collapse
|
18
|
Dryburgh LM, Bolan NS, Grof CPL, Galettis P, Schneider J, Lucas CJ, Martin JH. Cannabis contaminants: sources, distribution, human toxicity and pharmacologic effects. Br J Clin Pharmacol 2018; 84:2468-2476. [PMID: 29953631 DOI: 10.1111/bcp.13695] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
There has been a resurgence in interest and use of the cannabis plant for medical purposes. However, an in-depth understanding of plant contaminants and toxin effects on stability of plant compounds and human bioavailability is needed. This systematic review aims to assess current understanding of the contaminants of cannabis and their effect on human health, leading to the identification of knowledge gaps for future investigation. A systematic search of seven indexed biological and biomedical databases and the Cochrane library was undertaken from inception up to December 2017. A qualitative synthesis of filtered results was undertaken after independent assessment for eligibility by two reviewers. The common cannabis contaminants include microbes, heavy metals and pesticides. Their direct human toxicity is poorly quantified but include infection, carcinogenicity, reproductive and developmental impacts. Cannabis dosing formulations and administration routes affect the transformation and bioavailability of contaminants. There may be important pharmacokinetic interactions between the alkaloid active ingredients of cannabis (i.e. phytocannabinoids) and contaminants but these are not yet identified nor quantified. There is significant paucity in the literature describing the prevalence and human impact of cannabis contaminants. Advances in the availability of cannabis globally warrant further research in this area, particularly when being used for patients.
Collapse
Affiliation(s)
- Laura M Dryburgh
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Nanthi S Bolan
- The Australian Centre for Cannabinoid Clinical and Research Excellence, The University of Newcastle, Australia.,Global Centre for Environmental Remediation, The University of Newcastle, Australia
| | - Christopher P L Grof
- The Australian Centre for Cannabinoid Clinical and Research Excellence, The University of Newcastle, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Australia
| | - Peter Galettis
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, The University of Newcastle, Australia
| | - Jennifer Schneider
- Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Australia.,NSW Health Cannabis Medicines Advisory Service, Newcastle, New South Wales, Australia
| | - Catherine J Lucas
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia.,NSW Health Cannabis Medicines Advisory Service, Newcastle, New South Wales, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, The University of Newcastle, Australia
| |
Collapse
|
19
|
Impact of heavy metal lead stress on polyamine levels in Halomonas BVR 1 isolated from an industry effluent. Sci Rep 2017; 7:13447. [PMID: 29044167 PMCID: PMC5647450 DOI: 10.1038/s41598-017-13893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organisms. In this work, we demonstrate a correlation between cellular concentration of three major polyamines (putrescine, spermidine and spermine) with lead exposure on bacteria for a period of 6–24 h. We report that indigenously isolated Halomonas sp. strain BVR 1 exhibits lead induced fluctuations in their cellular polyamine concentration. This response to lead occurs within 6 h post metal treatment. During the same time interval there was a surge in the growth of bacteria along with an enhancement in the putrescine levels. We conclude that in Halomonas sp. strain BVR 1, an early response is seen with respect to modulation of polyamines as a result of lead treatment and hypothesize that endogenous polyamines contribute towards scavenging lead in these bacteria.
Collapse
|