1
|
Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, Abu Bakar AMS. Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1. Sci Rep 2023; 13:20178. [PMID: 37978223 PMCID: PMC10656507 DOI: 10.1038/s41598-023-47511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
Collapse
Affiliation(s)
- Lee-Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore
| | - Aini Syahida Mat Yassim
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia.
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore.
- School of Health Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Abdullah Al Hadi Ahmad Fuaad
- Centre of Fundamental and Frontier Sciences in Self-Assembly (FSSA), Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thean Chor Leow
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Radin Shafierul Radin Yahaya
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Awang Muhammad Sagaf Abu Bakar
- Jabatan Perkhidmatan Veterinar Sabah, Aras 3, Blok B, Wisma Pertanian Sabah, Jalan Tasik, Luyang (Off Jln Maktab Gaya), Beg Berkunci 2051, 88999, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Sagástegui-Guarniz WA, Silva-Correa CR, Torre VEVL, González-Blas MV, Sagástegui-Guarniz WO, Calderón-Peña AA, Aspajo-Villalaz CL, Cruzado-Razco JL, Hilario-Vargas J. Wound healing by topical application of Momordica charantia L. formulations on mice. Vet World 2021; 14:2699-2704. [PMID: 34903928 PMCID: PMC8654749 DOI: 10.14202/vetworld.2021.2699-2704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Momordica charantia is mainly characterized by its antimicrobial and antioxidant properties. The current study aimed to evaluate the healing activity of gel and cream formulations based on M. charantia on induced wounds in mice. Materials and Methods Acetonic extract of M. charantia was prepared and incorporated into gel and cream formulations. Mus musculus Balb/c (n=30) with induced injury were distributed into five groups: Group I (control - day 7), Group II (control - day 14), Group III (1% gel - day 7), and Group IV (1% gel - day 14) to which 1% M. charantia gel was dermally applied daily for 7 and 14 days, respectively, Group V (1% cream - day 7) and Group VI (1% cream - day 14) to which of M. charantia 1% cream were dermally applied daily for 7 and 14 days, respectively. Time of wound closure was determined during the experimentation; rats were euthanized with sodium pentobarbital 60 mg/kg/pc v.ip. for obtaining skin samples for histopathological analysis. Results Groups IV and VI showed a higher percentage of wound closure on day 14, and in histopathological analysis, effect was greater in Group VI with the presence of fibroblasts and abundant collagen and elastic fibers. Conclusion M. charantia gel and cream showed wound healing activity on induced wounded mice; the most effective treatment was M. charantia 1% cream formulation.
Collapse
Affiliation(s)
| | - Carmen R Silva-Correa
- Department of Pharmacology, School of Pharmacy and Biochemistry, National University of Trujillo, Trujillo, Peru
| | - Víctor E Villarreal-La Torre
- Department of Pharmacology, School of Pharmacy and Biochemistry, National University of Trujillo, Trujillo, Peru
| | - María V González-Blas
- Department of Biochemistry, School of Pharmacy and Biochemistry, National University of Trujillo, Trujillo, Peru
| | | | - Abhel A Calderón-Peña
- Department of Biological Chemistry and Animal Physiology, School of Biological Science, National University of Trujillo, Trujillo, Peru
| | - Cinthya L Aspajo-Villalaz
- Department of Biological Chemistry and Animal Physiology, School of Biological Science, National University of Trujillo, Trujillo, Peru
| | - José L Cruzado-Razco
- Department of Pharmacology, School of Pharmacy and Biochemistry, National University of Trujillo, Trujillo, Peru
| | - Julio Hilario-Vargas
- Department of Physiology, School of Medicine, National University of Trujillo, Trujillo, Peru
| |
Collapse
|
3
|
Expression and purification of a recombinant ELRL-MAP30 with dual-targeting anti-tumor bioactivity. Protein Expr Purif 2021; 185:105893. [PMID: 33933613 DOI: 10.1016/j.pep.2021.105893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022]
Abstract
MAP30 (Momordica antiviral protein 30kD) is a single-chain Ⅰ-type ribosome inactivating protein with a variety of biological activities, including anti-tumor ability. It was reported that MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer. To determine whether adding two tumor targeting peptides could improve the antitumor activities of MAP30, we genetically modified MAP30 with an RGD motif and a EGFRi motif, which is a ligand with high affinity for αvβ3 integrins and with high affinity for EGFR. The recombinant protein ELRL-MAP30 (rELRL-MAP30) containing a GST-tag was expressed in E. coli. The rELRL-MAP30 was highly expressed in the soluble fraction after induction with 0.15 mM IPTG for 20 h at 16 °C. The purified rELRL-MAP30 appeared as a band on SDS-PAGE. It was identified by western blotting. Cytotoxicity of recombinant protein to HepG2, MDA-MB-231, HUVEC and MCF-7 cells was detected by MTT analysis. Half maximal inhibitory concentration (IC50) values were 54.64 μg/mL, 70.13 μg/mL, 146 μg/mL, 466.4 μg/mL, respectively. Proliferation inhibition assays indicated that rELRL-MAP30 could inhibit the growth of Human liver cancer cell HepG2 effectively. We found that rELRL-MAP30 significantly induced apoptosis in liver cancer cells, as evidenced by nuclear staining of DAPI. In addition, rELRL-MAP30 induced apoptosis in human liver cancer HepG2 cells by up-regulation of Bax as well as down-regulation of Bcl-2. Migration of cell line were markedly inhibited by rELRL-MAP30 in a dose-dependent manner compared to the recombinant MAP30 (rMAP30). In summary, the fusion protein displaying extremely potent cytotoxicity might be highly effective for tumor therapy.
Collapse
|
4
|
Ding GB, Wu G, Li B, Yang P, Li Z. High-yield expression in Escherichia coli, biophysical characterization, and biological evaluation of plant toxin gelonin. 3 Biotech 2019; 9:19. [PMID: 30622857 DOI: 10.1007/s13205-018-1559-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Gelonin is a plant toxin that exerts potent cytotoxic activity by inactivation of the 60S ribosomal subunit. The high-level expression of soluble gelonin still remains a great challenge and there was no detailed biophysical analysis of gelonin from Escherichia coli (E. coli) yet. In this study, the soluble and high-yield expression of recombinant gelonin (rGel) was achieved in E. coli BL21 (DE3) for the first time, with a yield of 6.03 mg/L medium. Circular dichroism (CD) analysis indicated that rGel consisted of 21.7% α-helix, 26.3% β-sheet, 18.5% β-turn, and 32.3% random coil, and it could maintain its secondary structure up to 60 °C. The antitumor activity of rGel was evaluated in two colon cancer cell lines-HCT116 and HCT-8, and it was clearly demonstrated that rGel exerted antiproliferative activity against these two cell lines by inhibiting cellular protein synthesis. These findings provide insights for researchers involved in the expression of similar biotoxins, and the biophysical characterizations of gelonin will favor its further therapeutic applications.
Collapse
|