1
|
Chaudhary P, Bhattacharjee A, Khatri S, Dalal RC, Kopittke PM, Sharma S. Delineating the soil physicochemical and microbiological factors conferring disease suppression in organic farms. Microbiol Res 2024; 289:127880. [PMID: 39236602 DOI: 10.1016/j.micres.2024.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Organic farming utilizes farmyard manure, compost, and organic wastes as sources of nutrients and organic matter. Soil under organic farming exhibits increased microbial diversity, and thus, becomes naturally suppressive to the development of soil-borne pathogens due to the latter's competition with resident microbial communities. Such soils that exhibit resistance to soil-borne phytopathogens are called disease-suppressive soils. Based on the phytopathogen suppression range, soil disease suppressiveness is categorised as specific- or general- disease suppression. Disease suppressiveness can either occur naturally or can be induced by manipulating soil properties, including the microbiome responsible for conferring protection against soil-borne pathogens. While the induction of general disease suppression in agricultural soils is important for limiting pathogenic attacks on crops, the factors responsible for the phenomenon are yet to be identified. Limited efforts have been made to understand the systemic mechanisms involved in developing disease suppression in organically farmed soils. Identifying the critical factors could be useful for inducing disease suppressiveness in conducive soils as a cost-effective alternative to the application of pesticides and fungicides. Therefore, this review examines the soil properties, including microbiota, and assesses indicators related to disease suppression, for the process to be employed as a tactical option to reduce pesticide use in agriculture.
Collapse
Affiliation(s)
- Priya Chaudhary
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivani Khatri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ram C Dalal
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter M Kopittke
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shilpi Sharma
- The University of Queensland and Indian Institute of Technology Delhi Research Academy, New Delhi 110016, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Mayerhofer J, Thuerig B, Oberhaensli T, Enderle E, Lutz S, Ahrens CH, Fuchs JG, Widmer F. Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane. FEMS Microbiol Ecol 2021; 97:6373440. [PMID: 34549287 PMCID: PMC8478479 DOI: 10.1093/femsec/fiab134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Compost applications vary in their plant growth promotion and plant disease suppression, likely due to differences in physico-chemical and biological parameters. Our hypothesis was that bacteria are important for plant growth promotion and disease suppression of composts and, therefore, composts having these traits would contain similar sets of indicative bacterial taxa. Seventeen composts prepared from five different commercial providers and different starting materials were classified accordingly with bioassays using cress plants and the pathogen Pythium ultimum. Using a metabarcoding approach, bacterial communities were assessed in bulk composts and cress rhizoplanes. Six and nine composts showed significant disease suppression or growth promotion, respectively, but these traits did not correlate. Growth promotion correlated positively with nitrate content of composts, whereas disease suppression correlated negatively with factors representing compost age. Growth promotion and disease suppression explained significant portions of variation in bacterial community structures, i.e. 11.5% and 14.7%, respectively. Among the sequence variants (SVs) associated with growth promotion, Microvirga, Acinetobacter, Streptomyces, Bradyrhizobium and Bacillus were highly promising, while in suppressive composts, Ureibacillus,Thermogutta and Sphingopyxis were most promising. Associated SVs represent the basis for developing prediction tools for growth promotion and disease suppression, a highly desired goal for targeted compost production and application.
Collapse
Affiliation(s)
| | - Barbara Thuerig
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Thomas Oberhaensli
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Eileen Enderle
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Stefanie Lutz
- Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, 8820, Wädenswil, Switzerland
| | - Christian H Ahrens
- Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, 8820, Wädenswil, Switzerland.,Bioinformatics and Proteogenomics, SIB Swiss Institute of Bioinformatics, 8820, Wädenswil, Switzerland
| | - Jacques G Fuchs
- Crop Protection and Phytopathology, FiBL Research Institute of Organic Agriculture, 5070, Frick, Switzerland
| | - Franco Widmer
- Molecular Ecology, Agroscope, 8046, Zurich, Switzerland
| |
Collapse
|