1
|
Wu L, Zhang L, Yuan L, Liao Q, Xiang J, Zhang D, Qiu T, Liu J, Guo J. Spatio-temporal variation of toxin-producing gene abundance in Microcystis aeruginosa from Poyang Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2930-2943. [PMID: 38079038 DOI: 10.1007/s11356-023-31284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.
Collapse
Affiliation(s)
- Lin Wu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Qiegen Liao
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Jianjun Xiang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China
| | - Dawen Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanlian Road 602, Nanchang, 330200, People's Republic of China.
| | - Tong Qiu
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jutao Liu
- Jiangxi Provincial Institute of Water Sciences, Nanchang, 330200, Jiangxi, China
| | - Junhui Guo
- Institute WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Li J, Xian X, Xiao X, Li S, Yu X. Dynamic characteristics of total and microcystin-producing Microcystis in a large deep reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122256. [PMID: 37506805 DOI: 10.1016/j.envpol.2023.122256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microcystis, one of the common cyanobacteria, often causes blooms in reservoirs, which has seriously threatened the safety of drinking water worldwide. To identify the growth characteristic of total and microcystin-producing Microcystis in large deep reservoirs, we used Quantitative PCR (qPCR) to measure the cell density of total and microcystin-producing Microcystis and monitored water quality in the water samples collected in Dongzhang Reservoir once a month. Microcystis blooms occurred in Dongzhang Reservoir in April 2017, which was composed of microcystin-producing and non-microcystin-producing Microcystis. Water temperature, dissolved oxygen, pH, and chlorophyll-a showed significant vertical stratification during Microcystis blooms. Total and microcystin-producing Microcystis grew rapidly under the high concentration of total phosphorus and rising water temperatures. Nitrate-nitrogen had a significant linear correlation with the abundance of microcystin-producing Microcystis. Our results indicated that nutrients and water temperature could be key triggers of Microcystis blooms and nitrate-nitrogen potentially regulates the competition between microcystin-producing and non-microcystin-producing Microcystis. This study improves our understanding of the characteristics of Microcystis blooms and the competition between microcystin-producing and non-microcystin-producing Microcystis in large deep reservoirs.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Xuanxuan Xian
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Shuai Li
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No.158 Dongda Road, Gulou District, Fuzhou, 350001, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Štenclová L, Wilde SB, Schwark M, Cullen JL, McWhorter SA, Niedermeyer THJ, Henderson WM, Mareš J. Occurrence of aetokthonotoxin producer in natural samples - A PCR protocol for easy detection. HARMFUL ALGAE 2023; 125:102425. [PMID: 37220978 PMCID: PMC10206276 DOI: 10.1016/j.hal.2023.102425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/17/2023] [Indexed: 05/25/2023]
Abstract
Cyanobacteria are well known producers of bioactive metabolites, including harmful substances. The recently discovered "eagle killer" neurotoxin aetokthonotoxin (AETX) is produced by the epiphytic cyanobacterium Aetokthonos hydrillicola growing on invasive water thyme (Hydrilla verticillata). The biosynthetic gene cluster of AETX was previously identified from an Aetokthonos strain isolated from the J. Strom Thurmond Reservoir, Georgia, USA. Here, a PCR protocol for easy detection of AETX-producers in environmental samples of plant-cyanobacterium consortia was designed and tested. Three different loci of the AETX gene cluster were amplified to confirm the genetic potential for AETX production, along with two variable types of rRNA ITS regions to confirm the homogeneity of the producer´s taxonomic identity. In samples of Hydrilla from three Aetokthonos-positive reservoirs and one Aetokthonos-negative lake, the PCR of all four loci provided results congruent with the Aetokthonos presence/absence detected by light and fluorescence microscopy. The production of AETX in the Aetokthonos-positive samples was confirmed using LC-MS. Intriguingly, in J. Strom Thurmond Reservoir, recently Hydrilla free, an Aetokthonos-like cyanobacterium was found growing on American water-willow (Justicia americana). Those specimens were positive for all three aet markers but contained only minute amounts of AETX. The obtained genetic information (ITS rRNA sequence) and morphology of the novel Aetokthonos distinguished it from all the Hydrilla-hosted A. hydrillicola, likely at the species level. Our results suggest that the toxigenic Aetokthonos spp. can colonize a broader array of aquatic plants, however the level of accumulation of the toxin may be driven by host-specific interactions such as the locally hyper-accumulated bromide in Hydrilla.
Collapse
Affiliation(s)
- Lenka Štenclová
- Biology Centre of the CAS, Institute of Hydrobiology, České Budějovice, 370 05 Czechia; University of South Bohemia, Faculty of Science, České Budějovice, 370 05 Czechia
| | - Susan B Wilde
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602 USA
| | - Markus Schwark
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120 Germany
| | - Jeffrey L Cullen
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602 USA
| | - Seth A McWhorter
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602 USA; U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, 30605 USA
| | - Timo H J Niedermeyer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120 Germany
| | - W Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, 30605 USA
| | - Jan Mareš
- Biology Centre of the CAS, Institute of Hydrobiology, České Budějovice, 370 05 Czechia; University of South Bohemia, Faculty of Science, České Budějovice, 370 05 Czechia; Centre Algatech, Institute of Microbiology of the CAS, Třeboň, 379 01 Czechia.
| |
Collapse
|
4
|
Priya K, Rathinasabapathi P, Arunraj R, Sugapriya D, Ramya M. Development of multiplex HRM-based loop-mediated isothermal amplification method for specific and sensitive detection of Treponema pallidum. Arch Microbiol 2022; 204:355. [PMID: 35648234 DOI: 10.1007/s00203-022-02973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
Syphilis is a sexually transmitted disease caused by the spirochaete bacterium Treponema pallidum. This study has developed a multiplex High-Resolution Melt-curve Loop-mediated isothermal amplification (multiplex HRM-LAMP) assay targeting the marker genes polA and tprL to detect T. pallidum. The multiplex HRM-LAMP assay conditions were optimized at 65 °C for 45 min. Real-time melt-curve analysis of multiplex HRM-LAMP shows two melt-curve peaks corresponding to polA and tprL with a Tm value of 80 ± 0.5 °C and 87 ± 0.5 °C, respectively. The detection limit of multiplex HRM-LAMP was found to be 6.4 × 10-4 ng/μL (3.79 copies/μL) of T. pallidum. The specificity was evaluated using seven different bacterial species, and the developed method was 100% specific in detecting T. pallidum. A total of 64 blood samples of T. pallidum suspected cases were used to validate the assay method. The clinical validation showed that the assay was 96.43% sensitive and 100% specific in detecting syphilis. Thus, the developed method was more rapid and sensitive than other available methods and provides a multigene-based diagnostic approach to detect T. pallidum.
Collapse
Affiliation(s)
- Krishnamoorthy Priya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Pasupathi Rathinasabapathi
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Rex Arunraj
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India
| | - Dhanasekaran Sugapriya
- Department of Medical Laboratory (Pathology), College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Wadi-Al Dawaser, 11451, Riyadh, Saudi Arabia
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Feist SM, Lance RF. Genetic detection of freshwater harmful algal blooms: A review focused on the use of environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. HARMFUL ALGAE 2021; 110:102124. [PMID: 34887004 DOI: 10.1016/j.hal.2021.102124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Recurrence and severity of harmful algal blooms (HABs) are increasing due to a number of factors, including human practices and climate change. Sensitive and robust methods that allow for early and expedited HAB detection across large landscape scales are needed. Among the suite of HAB detection tools available, a powerful option exists in genetics-based approaches utilizing environmental sampling, also termed environmental DNA (eDNA). Here we provide a detailed methodological review of three HAB eDNA approaches (quantitative PCR, high throughput sequencing, and isothermal amplification). We then summarize and synthesize recently published eDNA applications covering a variety of HAB surveillance and research objectives, all with a specific emphasis in the detection of two widely problematic freshwater species, Microcystis aeruginosa and Prymnesium parvum. In our summary and conclusion we build on this literature by discussing ways in which eDNA methods could be advanced to improve HAB detection. We also discuss ways in which eDNA data could be used to potentially provide novel insight into the ecology, mitigation, and prediction of HABs.
Collapse
Affiliation(s)
- Sheena M Feist
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States.
| | - Richard F Lance
- Environmental Lab, United States Army Corps of Engineers Research and Development Center, Vicksburg, MS, 39180, United States
| |
Collapse
|
6
|
Li J, Feng M, Yu X. Rapid detection of mcyG gene of microcystins producing cyanobacteria in water samples by recombinase polymerase amplification combined with lateral flow strips. JOURNAL OF WATER AND HEALTH 2021; 19:907-917. [PMID: 34874899 DOI: 10.2166/wh.2021.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, cyanobacteria blooms and microcystins (MCs) pollution are threatening water safety and public health. In this study, a rapid detection method was established for detecting MCs producing cyanobacteria. The MC synthesis gene mcyG was measured through recombinase polymerase amplification combined with lateral flow strips (LF-RPA) technology. The target gene mcyG was amplified at a temperature range of 37-45 °C, and the amplification time to detect mcyG was only 15 min at 37 °C. The optimal reaction conditions were confirmed using single dependent variable experiments, suggesting that the best probe dosage for 50 μL of the reaction mixture was 0.2 μL, the best dilution ratio of products was 1/100, and the best loading volume was 10 μL. The specificity test proved that the LF-RPA assay could distinguish MCs producing cyanobacteria from nontoxic algae well. Within 35 min of amplification time, the detection limit of the LF-RPA assay was 103 copies/mL mcyG and 104 cells/mL Microcystis aeruginosa FACHB-905. Overall, the LF-RPA assay could detect MCs producing cyanobacteria in water samples quickly and accurately, and it has a great promise to be applied for monitoring the MCs producing cyanobacteria blooms in natural waters.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| |
Collapse
|