1
|
Oladimeji JJ, Abe A, Kumar PL, Agre PA, Ilesanmi OJ, Vetukuri RR, Bhattacharjee R. Extent and patterns of morphological and molecular genetic diversity and population structure of Nigerian Taro cultivars. BMC PLANT BIOLOGY 2024; 24:1077. [PMID: 39538118 PMCID: PMC11562719 DOI: 10.1186/s12870-024-05791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Genetic diversity is crucial for conservation efforts as well as breeding programs targeted at the development of improved varieties. Taro, a climate-resilient crop, plays a vital role in the nutritional and economic livelihoods of many households in Nigeria, but its yield is very low due to inadequate genetic improvement efforts. A diversity assessment of Nigerian taro is therefore required to create a premise for its improvement in yield, quality and disease tolerance. In this study, the genetic diversity and population structure of 490 taro cultivars comprising two main gene pools: Dasheen (215) and Eddoe (275), collected from farmers and marketers across seven states in Nigeria was assessed using 3047 Diversity Array Technology single nucleotide polymorphism (DArT-SNP) markers. A subset of 114 taro cultivars, comprising 30 Dasheens and 84 Eddoes were further phenotyped using 24 agro-morphological descriptors. RESULTS Both phenotypic and molecular characterization revealed higher genetic diversity among the Eddoes than Dasheens. Estimates of gene flow (Nm = 0.353) revealed intermixing of cultivars among the States of collection, with the highest gene flow occurring between cultivars from Anambra and Ondo states and the lowest between Anambra and Kwara states. Population structure and Ward's minimum variance hierarchical cluster based on DArT-SNPs identified four groups, one comprising Dasheen and three comprising Eddoe cultivars. Hierarchical clustering based on phenotypic traits delineated three clusters. Variation between gene pools (49%) was higher than within gene pools (32%). Variation among States of collection was high (41%), while variation among individuals within gene pools (18%) and States of collection (19%) was relatively low. Correlation between phenotypic and genotypic diversity assessments was low (r = 0.01), indicating that both approaches were necessary for assessing genetic diversity in taro. However, genotypic assessment provided better information about genetic diversity of the taro cultivars. CONCLUSION This is the first study that represented germplasm collection across the major taro growing regions of Nigeria. The findings from this study based on agro-morphological characterization and DArT-SNP genotyping are critical for genetic characterization, conservation and breeding of taro in Nigeria, mainly initiating hybridization between the two genepools after careful assessment of ploidy levels of the accessions collected in this study. This will facilitate in developing improved taro varieties with desirable traits, such as higher yield, better disease resistance, and improved nutritional quality.
Collapse
Affiliation(s)
- Joy Jesumeda Oladimeji
- Plant Breeding Program, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Oyo State, 200284, Nigeria.
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Oyo State, 200001, Nigeria.
| | - Ayodeji Abe
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Oyo State, 200284, Nigeria
| | - Pullikanti Lava Kumar
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Paterne A Agre
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Oluyinka Johnson Ilesanmi
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Lomma, SE-23422, Sweden.
| | - Ranjana Bhattacharjee
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan, Oyo State, 200001, Nigeria.
| |
Collapse
|
2
|
Mulugeta B, Ortiz R, Geleta M, Hailesilassie T, Hammenhag C, Hailu F, Tesfaye K. Harnessing genome-wide genetic diversity, population structure and linkage disequilibrium in Ethiopian durum wheat gene pool. FRONTIERS IN PLANT SCIENCE 2023; 14:1192356. [PMID: 37546270 PMCID: PMC10400094 DOI: 10.3389/fpls.2023.1192356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.
Collapse
Affiliation(s)
- Behailu Mulugeta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Sinana Agricultural Research Center, Oromia Agricultural Research Institute, Bale-Robe, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Faris Hailu
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology and Biotechnology, Wollo University, Dessie, Ethiopia
| |
Collapse
|
3
|
José Luis SC, Paulino PR, Bello-Bello JJ, Esteban EP, Víctor Heber AR, Tarsicio CT, Gabino GDLS, Victorino MR. SNP markers identification by genome wide association study for chemical quality traits of coffee (Coffea spp.) Germplasm. Mol Biol Rep 2022; 49:4849-4859. [PMID: 35474051 DOI: 10.1007/s11033-022-07339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Coffee quality is an important selection criterion for coffee breeding. Metabolite profiling and Genome-Wide Association Studies (GWAS) effectively dissect the genetic background of complex traits such as metabolites content (caffeine, trigonelline, and 5-caffeoylquinic acid (5-CQA)) in coffee that affect quality. Therefore, it is important to determine the metabolic profiles of Coffea spp. genotypes. This study aimed to identify Single Nucleotide Polymorphisms (SNPs) within Coffea spp. genotypes through GWAS and associate these significant SNPs to the metabolic profiles of the different genotypes. METHODS AND RESULTS A total of 1,739 SNP markers were obtained from 80 genotypes using the DArTseq™ method. Caffeine, trigonelline, and 5-CQA content were determined in coffee leaves using Ultra-Performance Liquid Chromatography/tandem mass spectrometry (UPLC-MS/MS) analyses. The GWAS was carried out using the Genome Association and Prediction Integrated Tool (GAPIT) software and a compressed mixed linear model. Finally, a total of three significant SNP markers out of ten were identified. One SNP, located in the coffee chromosome (Chr) 8, was significantly associated with caffeine. The two remaining SNPs, located in Chr 4 and 5, were significantly associated with trigonelline and six SNPs markers were associated with 5-CQA in Chr 1, 5 and 10, but these six markers were not significant. CONCLUSIONS These significant SNP sequences were associated with protein ubiquitination, assimilation, and wall receptor kinases. Therefore, these SNPs might be useful hits in subsequent quality coffee breeding programs.
Collapse
Affiliation(s)
- Spinoso-Castillo José Luis
- Colegio de Postgraduados Campus Montecillo, Carretera Federal México-Texcoco km 36.5, 56230, Texcoco, Estado de México, México.
| | - Pérez-Rodríguez Paulino
- Colegio de Postgraduados Campus Montecillo, Carretera Federal México-Texcoco km 36.5, 56230, Texcoco, Estado de México, México
| | - Jericó Jabín Bello-Bello
- CONACYT-Colegio de Postgraduados Campus Córdoba, Carretera Federal Córdoba-Veracruz km 348, Amatlán de los Reyes 94946, Veracruz, México
| | - Escamilla-Prado Esteban
- Universidad Autónoma Chapingo, Centro Regional Universitario Oriente, Carretera Huatusco-Xalapa Km 6, 94100, Huatusco, Veracruz, México
| | - Aguilar-Rincón Víctor Heber
- Colegio de Postgraduados Campus Montecillo, Carretera Federal México-Texcoco km 36.5, 56230, Texcoco, Estado de México, México
| | - Corona-Torres Tarsicio
- Colegio de Postgraduados Campus Montecillo, Carretera Federal México-Texcoco km 36.5, 56230, Texcoco, Estado de México, México
| | - García-de Los Santos Gabino
- Colegio de Postgraduados Campus Montecillo, Carretera Federal México-Texcoco km 36.5, 56230, Texcoco, Estado de México, México
| | - Morales-Ramos Victorino
- Colegio de Postgraduados Campus Córdoba, Carretera Federal Córdoba-Veracruz km 348, Amatlán de los Reyes, 94946, Veracruz, México
| |
Collapse
|
4
|
Exploration of the Genetic Diversity of Solina Wheat and Its Implication for Grain Quality. PLANTS 2022; 11:plants11091170. [PMID: 35567171 PMCID: PMC9102871 DOI: 10.3390/plants11091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Different Solina wheat accessions (n = 24) collected in the Abruzzo region (Italy) were studied using 45,000 SNP markers generated from the DarTseq platform. The structure of genetic data was analyzed by Principal Component Analysis and Hierarchical Cluster analysis that revealed the existence of two main clusters (Clu1 and Clu2) characterized by samples with different geographical origin. The Solina genetic dataset was further merged and analyzed with a public genetic one provided by CIMMYT containing 25,963 genotypes from all over the world. The Solina accessions occupied a vast space, thus confirming a high heterogeneity of this landrace that, nevertheless, is considerably unique and placed quite far from other clusters. Clu1 and Clu2 divergence were clearly visible. Solina clusters were genetically closer to landraces from Turkey and the central fertile crescent than to the Italian genotypes present in the dataset. Selected commercial quality traits of accessions of the two Solina clusters were analyzed (yield, thousand kernel weight, test weight, and protein content), and significant differences were found between clusters. The results of this investigation did not highlight any relationships of Solina with Italian genotypes, and confirmed its wide genetic diversity by permitting to identify two genetic groups with distinct origin and quality traits.
Collapse
|
5
|
Korpelainen H, Elshibli S. Assessment of genetic relationships among native and introduced Himalayan balsam ( Impatiens glandulifera) plants based on genome profiling. Ecol Evol 2021; 11:13295-13304. [PMID: 34646470 PMCID: PMC8495832 DOI: 10.1002/ece3.8051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
We conducted genomic characterization based on SNP and SilicoDArT markers on the invasive Himalayan balsam (Impatiens glandulifera) plants originating from native and non-native regions of their distribution. When genetic relationships were explored by PCoA using SNP and SilicoDArT marker data, the first, second, and third principal coordinates explained altogether 37.4% and 31.0% of the variability, respectively. Samples from the UK, Canada, and Pakistan were grouped together, while Indian plants were clearly distinct based on SNP markers but relatively close to the UK-Canada-Pakistan group based on SilicoDArT markers. Constructed trees differentiated individuals into clusters resembling the PCoA patterns. The Bayesian BAPS analysis performed for the SNP data revealed that the individuals were distributed in seven clusters, representing samples from each of the four Finnish populations, India, Pakistan, and the combination of the UK and Canada. Similar clustering was visible in the UPGMA tree. The Indian cluster did not display any ancestral gene flow with the others, while the Pakistani cluster showed ancestral gene flow only with the combined UK and Canada cluster. Furthermore, the latter cluster displayed ancestral gene flow with the Finnish populations varying from 0% to 3.1%. The BAPS analyses conducted for the SilicoDArT data differ slightly: The individuals were distributed in nine clusters, and the Indian cluster exhibited ancestral gene flow with the mixed cluster including Canadian, Pakistani, and UK samples, and one Finnish sample. The AMOVA showed that 45% and 26% of variation was present among the I. glandulifera groups/populations and the rest within them based on SNP and SilicoDArT markers, respectively. The Bayesian BAPS analyses and the gene flow networks were the most informative tools for resolving relationships among native and introduced plants. It is notable that the small sample sizes for non-Finnish plant materials may affect the accuracy of the gene flow and other estimates.
Collapse
Affiliation(s)
- Helena Korpelainen
- Department of Agricultural SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Sakina Elshibli
- Department of Agricultural SciencesViikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|