1
|
Zeng Y, Qiu Y, Wang Y, Zhang X, Wang D, Chen X, Gao P, Du L, Xie F, Wang J. Effects of γ-ray irradiation on insect pests, physicochemical properties, and microbial community of strong-flavor Daqu during maturation. Appl Radiat Isot 2025; 220:111780. [PMID: 40086114 DOI: 10.1016/j.apradiso.2025.111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Daqu is the fermentation starter of Chinese Baijiu, which is one of the six major types of liquor in the world. However, the incubation and maturation processes of Daqu are prone to infestation by pests, resulting in compromised quality and decreased grade. Irradiation technology, as an effective insecticide, has been applied to the insecticide treatment of grain. In this study, γ-ray irradiation was used to control pests during the maturation of Daqu. By analyzing the changes in the microbial communities and physicochemical properties of Baijiu Daqu bricks during maturation with time and irradiation dose, an optimal irradiation dose was obtained. The results showed that after γ-ray irradiation treatment at 0.27-0.36 kGy, all stages of insect pests in Daqu died within one month. Irradiation at a dose of 0.27 kGy could improve saccharifying power and liquefying power, and reduce acidity. Furthermore, a positive correlation was found between saccharifying power and Lactobacillaceae, Marinilabiliaceae, and Saccharomycopsidaceae, as well as between liquefying power and Lactobacillaceae, Aspergillaceae, and Phaffomycetaceae. Additionally, the number of pests positively correlated with Bacillaceae, Thermoactinomycetaceae, Thermoascaceae, and Trichocomaceae, suggesting that the activity of pests in Daqu might lead to an increase in the proportion of these microorganisms. This work provides a reference for the control of insect pests and microorganisms in Daqu and offers new insights for the application of irradiation technology in the Baijiu Daqu industry.
Collapse
Affiliation(s)
- Yu Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Yue Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Yu Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaopeng Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Peng Gao
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, 610100, China
| | - Liquan Du
- Sichuan Forgood Distillery Co. Ltd., Mianyang, Sichuan, 621000, China
| | - Fei Xie
- Sichuan Forgood Distillery Co. Ltd., Mianyang, Sichuan, 621000, China
| | - Jin Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
2
|
Gao P, Ma J, Basit RA, Lou X, Zhang W, Song H, Fu Z, Sun Q, Liu X, Wang J, Fan G, Yang R. Investigation of the enzymatic characteristics of thermotolerant xylanase McXyn0243 derived from Malbranchea cinnamomea, and its application in the degradation of three agricultural residues for the production of xylooligosaccharides. Int J Biol Macromol 2025; 313:143973. [PMID: 40334905 DOI: 10.1016/j.ijbiomac.2025.143973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Malbranchea cinnamomea produces enzymes essential for degrading lignocellulosic materials, converting agricultural waste into high-value compounds like xylooligosaccharides (XOSs). In this study, we cloned and expressed an endo-1,4-β-xylanase, McXyn0243, from M. cinnamomea and investigated its enzymatic properties and application in agricultural wastes degradation. The cDNA of McXyn0243 (675 bp) encodes a 24.4 kDa glycoside hydrolase family 11 enzyme with optimal activity at pH 7.5 and 70 °C. McXyn0243 also demonstrated broad stability across a wide range of pH and temperatures. It showed higher activity on alcohol-insoluble xylan than water-insoluble xylan, with the highest specific activity (2163.2 U/mg) observed when rice husk alcohol-insoluble xylan was used. Kinetic parameters for beechwood xylan were Km = 8.6 ± 0.3 mg/mL, kcat = 26,212.5 s-1, and kcat/Km = 3048.0 mL/mg/s. McXyn0243 degraded xylotriose to xylobiose but not xylobiose, with xylotriose and xylobiose as the main products from xylotetraose, xylopentaose, and xylohexaose. Coupled with autohydrolysis, McXyn0243 produced XOSs yields of 123.3 ± 1.9 mg/g, 222.4 ± 1.3 mg/g, and 150.1 ± 0.9 mg/g from rice husk, corn cob, and wheat bran, with xylobiose and xylotriose as the main components.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiangqin Lou
- Zichuan District Inspection and Test Center, Zibo 255100, China
| | - Weiyan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Huanlu Song
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhilei Fu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Biology and Food Science, Hebei Minzu Normal University, Chengde 067000, China
| | - Qi Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Guangsen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Ran Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Ma J, Basit RA, Yuan S, Zhao X, Liu X, Fan G. Optimization of fermentation conditions for the production of recombinant feruloyl esterase BpFae T132C-D143C. Folia Microbiol (Praha) 2025; 70:441-454. [PMID: 39283535 DOI: 10.1007/s12223-024-01197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/02/2024] [Indexed: 05/09/2025]
Abstract
Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFaeT132C-D143C with excellent thermal stability in Escherichia coli by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFaeT132C-D143C activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFaeT132C-D143C activity, was analyzed by Plackett-Burman design. We identified the main factors affecting the fermentation conditions of E. coli expressing BpFaeT132C-D143C as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFaeT132C-D143C was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFaeT132C-D143C activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFaeT132C-D143C in E. coli was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFaeT132C-D143C in degrading agricultural waste transformation applications.
Collapse
Affiliation(s)
- Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Sihan Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xuan Zhao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Guangsen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing, 100048, China.
| |
Collapse
|
4
|
Zhou HY, Peng JB, Chen YH, Yang ZJ, Liu ZQ, Zheng YG. Enhanced d-pantothenic acid biosynthesis by plasmid-free Escherichia coli through sodium pyruvate addition combined with glucose and temperature control strategy. J Appl Microbiol 2024; 135:lxae267. [PMID: 39474883 DOI: 10.1093/jambio/lxae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
AIMS d-pantothenic acid (d-PA) is an important vitamin widely used in the feed, pharmaceutical, and food industries. This study aims to enhance the d-PA production of a recombinant Escherichia coli without plasmid and inducer induction. METHODS AND RESULTS The fermentation medium in shake flask was optimized, resulting in a 39.50% increased d-PA titer (3.32 g l-1). Subsequently, the fed-batch fermentation in a 5-l fermenter was specifically investigated. First, a two-stage temperature control strategy led to a d-PA titer of 52.09 g l-1. Additionally, a two-stage glucose feeding was proposed and d-PA titer was increased to 65.29 g l-1. It was also found that an appropriate amount of sodium pyruvate was beneficial to cell growth and d-PA synthesis. Finally, a two-stage glucose feeding combined with sodium pyruvate addition resulted in a substantially improved d-PA production with a titer of 72.90 g l-1. CONCLUSION The d-PA synthesis was significantly improved through the fermentation process established in this work, i.e. sodium pyruvate addition combined with the temperature and glucose control strategy. The results of this study could provide significant reference for the industrial fermentation production of d-PA.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jin-Bang Peng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi-Hong Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zi-Jian Yang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Gu D, Tang S, Liu C, He D, Tian J, Yang Y. Optimization of liquid fermentation conditions for Coprinus comatus to enhance antioxidant activity. Prep Biochem Biotechnol 2024; 54:830-837. [PMID: 38147976 DOI: 10.1080/10826068.2023.2297703] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Coprinus comatus is an edible and medicinal fungus. In this study, the antioxidant activity of the fermentation product of C. comatus was investigated through optimization of fermentation process. The results indicated that the fermentation product of C. comatus had obvious scavenging ability for 2,2'-Azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) free radical. The EC50 of the n-butanol extract from the fermentation product on ABTS·+ was 0.65 ± 0.02 mg/mL. On this basis, the liquid fermentation conditions of C. comatus were optimized through single factor and response surface optimization experiments according to the scavenging ability of ABTS·+ to improve the antioxidant capacity of the fermentation product. The results showed that when the 14% of C. comatus was fermented in a culture medium with a C/N ratio of 48:1 for 6 days, the ABTS·+ scavenging ability was the strongest, and the EC50 of n-butanol extract was 0.57 ± 0.01 mg/mL, which was 12.31% higher than the initial activity. This study laid the foundation for the development of C. comatus.
Collapse
Affiliation(s)
- Dongyu Gu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dajun He
- College of Life Science, Shihezi University, Shihezi, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
7
|
Zhang Y, Hu J, Zhang Q, Cai D, Chen S, Wang Y. Enhancement of alkaline protease production in recombinant Bacillus licheniformis by response surface methodology. BIORESOUR BIOPROCESS 2023; 10:27. [PMID: 38647919 PMCID: PMC10991860 DOI: 10.1186/s40643-023-00641-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/03/2023] [Indexed: 04/25/2024] Open
Abstract
Alkaline protease is widely used in the food, detergent, and pharmaceutical industries because of its comparatively great hydrolysis ability and alkali tolerance. To improve the ability of the recombinant Bacillus licheniformis to produce alkaline protease, single-factor experiments and response surface methodology (RSM) were utilized to determine and develop optimal culture conditions. The results showed that three factors (corn starch content, soybean meal content, and initial medium pH) had significant effects on alkaline protease production (P < 0.05), as determined through the Plackett‒Burman design. The maximum enzyme activity was observed with an optimal medium composition by central composite design (CCD): corn starch, 92.3 g/L; soybean meal, 35.8 g/L; and initial medium pH, 9.58. Under these optimum conditions, the alkaline protease activity of strain BL10::aprE was 15,435.1 U/mL, 82% higher than that in the initial fermentation medium. To further investigate the application of the optimum fermentation medium, the overexpressed strain BL10::aprE/pHYaprE was cultured using the optimized medium to achieve an enzyme activity of 39,233.6 U/mL. The present study achieved the highest enzyme activity of alkaline protease by B. licheniformis at the shake-flask fermentation level, which has important application value for large-scale production.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China
| | - Jingmin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China
| | - Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China.
| |
Collapse
|
8
|
Wang J, Tang S, Guo S, Gu D, Wang Y, Tian J, Yang Y. Fermentation of Agaricus bisporus for antioxidant activity: response surface optimization, chemical components, and mechanism. Prep Biochem Biotechnol 2022:1-11. [PMID: 36345997 DOI: 10.1080/10826068.2022.2142941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).
Collapse
Affiliation(s)
- Jifeng Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
9
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
10
|
Xu Y, Huang H, Lu H, Wu M, Lin M, Zhang C, Zhao Z, Li W, Zhang C, Li X, Sun B. Characterization of an Aspergillus niger for Efficient Fatty Acid Ethyl Ester Synthesis in Aqueous Phase and the Molecular Mechanism. Front Microbiol 2022; 12:820380. [PMID: 35265050 PMCID: PMC8899536 DOI: 10.3389/fmicb.2021.820380] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Fatty acid ethyl esters are important flavor chemicals in strong-flavor baijiu. Microorganisms are the main contributors to ester synthesis during baijiu manufacture. However, the ester synthesis was unstable between batches. This was owing to a limited knowledge of the mechanisms for ester synthesis by microorganisms. In this work, a fatty acid ethyl ester synthesizing Aspergillus niger strain CGMCC (China General Microbiological Culture Collection) 3.4309 was identified. The conversion ratios of ethyl valerate, ethyl caproate, ethyl caprylate, and ethyl caprate were 7.87, 29.20, 94.80, and 85.20%, respectively, under the optimized conditions. A comparison of transcriptomes under the initial and optimized ester synthetic conditions indicated that 23 genes were upregulated in transcription level and encoded enzymes with potential abilities for ester synthesis. Eleven of the enzymes were expressed, and three of them, numbered An605, An1097, and An3131, showed the ability to catalyze fatty acid ethyl ester synthesis under aqueous phase, with capric acid as the preferred substrate. The possible enzymatic catalytic mechanism was proposed based on homology modeling and molecular docking. This study reported for the first time that A. niger showed the ability to efficiently catalyze the synthesis of short- and medium-chain fatty acid ethyl esters in aqueous phase, identified the key enzymes, and analyzed the basic enzymatic properties. This is helpful to promote the application of related microorganisms and enzyme resources in the baijiu industry.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | | | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Hebei, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Fu Z, Zhu Y, Teng C, Fan G, Li X. Biochemical characterization of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 and its application for hydrolyzing wheat bran. 3 Biotech 2022; 12:24. [PMID: 35036272 PMCID: PMC8695398 DOI: 10.1007/s13205-021-03066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, a novel feruloyl esterase (BpFae) from Burkholderia pyrrocinia B1213 was purified, biochemically characterized, and applied in releasing ferulic acid from wheat bran. The molecular mass of BpFae was approximately 60 kDa by SDS-PAGE, and the enzyme was a homomultimer in solution. BpFae displayed maximum activity at pH 4.5-5.0 and was stable at pH 3.0-7.0. The optimal temperature for BpFae was 50 °C. BpFae activity was not affected by most metal ions tested and was significantly increased by Tween-20 and Triton-100. Purified BpFae exhibited a preference for methyl ferulate (41.78 U mg-1) over methyl p-coumarate (38.51 U mg-1) and methyl caffeate (35.36 U mg-1) and had the lowest activity on methyl sinapate (1.79 U mg-1). Under the optimum conditions, the K m and V max for methyl ferulate were 0.53 mM and 86.74 U mg-1, respectively. Residues Ser209, His492, and Glu245 in the catalytic pocket of BpFae could form hydrogen bonds with the substrate and were crucial for catalytic activity and substrate specificity. When G11 xylanase XynA and BpFae were used separately for hydrolyzing de-starched wheat bran (DSWB), the ferulic acid released was undetectable and 1.78%, respectively, whereas it was increased to 59.26% using the mixture of the two enzymes. Thus, BpFae is considered an attractive candidate for the production of ferulic acid from agricultural by-products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03066-2.
Collapse
Affiliation(s)
- Zhilei Fu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Yuting Zhu
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Chao Teng
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Guangsen Fan
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Xiuting Li
- grid.411615.60000 0000 9938 1755Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China ,grid.411615.60000 0000 9938 1755School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China ,grid.411615.60000 0000 9938 1755Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| |
Collapse
|
12
|
Affiliation(s)
- Divya Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| |
Collapse
|
13
|
Zhang J, Liu S, Sun H, Jiang Z, Zhou Z, Han X, Zhou Y, Sun H, Zhou W, Mao J. Enzyme Production Potential of Penicillium oxalicum M1816 and Its Application in Ferulic Acid Production. Foods 2021; 10:2577. [PMID: 34828858 PMCID: PMC8621443 DOI: 10.3390/foods10112577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
The present study focused on isolating an efficient enzyme production microorganism for ferulic acid (FA) production from wheat bran. A wild-type cellulase-, xylanase-, and feruloyl esterase-producing strain was isolated and identified as Penicillium oxalicum M1816. The genome was sequenced and assembled into 30.5 Mb containing 8301 predicted protein-coding genes. In total, 553 genes were associated with carbohydrate metabolism. Genomic CAZymes analysis indicated that P. oxalicum M1816, comprising 39 cellulolytic enzymes and 111 hemicellulases (including 5 feruloyl esterase genes), may play a vital role in wheat bran degradation and FA production. The crude enzyme of strain M1816 could release 1.85 ± 0.08 mg·g-1 FA from de-starched wheat bran (DSWB) at 12 h, which was significantly higher than other commercial enzymes. Meanwhile, when the strain M1816 was cultured in medium supplemented with DSWB, up to 92.89% of the total alkali-extractable FA was released. The process parameters of solid-state fermentation were optimized to enhance enzyme production. The optimized wheat bran Qu of P. oxalicum M1816 was applied to huangjiu fermentation, and the FA content was increased 12.4-fold compared to the control group. These results suggest that P. oxalicum M1816 is a good candidate for the development of fermented foods bio-fortified with FA.
Collapse
Affiliation(s)
- Jing Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Zhengfei Jiang
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Xiao Han
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Yongxiang Zhou
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Honggen Sun
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Weibiao Zhou
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| |
Collapse
|
14
|
Zou SP, Zhao K, Wang ZJ, Zhang B, Liu ZQ, Zheng YG. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech 2021; 11:295. [PMID: 34136332 DOI: 10.1007/s13205-021-02773-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, β-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0 g/L, β-alanine 2.25 g/L and (NH4)2SO4 11.8 g/L, the D-PA titer increases from 3.2 g/L to 6.73 g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6 g/L) and productivity (13.2 g/L·d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79 g/L to 8.55 g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02773-0.
Collapse
Affiliation(s)
- Shu-Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Kuo Zhao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Jian Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
15
|
Pal D, Patel G, Dobariya P, Nile SH, Pande AH, Banerjee UC. Optimization of medium composition to increase the expression of recombinant human interferon-β using the Plackett-Burman and central composite design in E. coli SE1. 3 Biotech 2021; 11:226. [PMID: 33968571 DOI: 10.1007/s13205-021-02772-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recombinant human interferon-β (rhIFN-β) is therapeutically important and new commercially viable approaches are needed for its increased production. In this study, a codon-optimized gene encoding for rhIFN-β(C17S) protein was designed and expressed in E. coli SE1. As a first step of medium optimization, growth of E. coli as a function of different media components was studied. Subsequently, to optimize the media composition, a response surface methodology (RSM) was used. Our results show that optimized medium (15.0 g/L tryptone, 12.3 g/L meat extract, 1.0 g/L MgSO4 and 0.5 g/L thiamine along with minimal medium) obtained in this study provide better growth of recombinant cells and the expression level of recombinant protein was ~ 1.7-fold more than Luria-Bertani medium. The optimized medium may be utilized for the large-scale production of rhIFN-β.
Collapse
Affiliation(s)
- Dharam Pal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, 160062 Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, 160062 Punjab, India
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 PR China
| | - Prakashkumar Dobariya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, 160062 Punjab, India
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 PR China
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, 160062 Punjab, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Sector 67, 160062 Punjab, India
| |
Collapse
|
16
|
Fu Z, Fan G, Zhu Y, Teng C, Li H, Liu Q, Yang R, Li X. Soluble expression of a novel feruloyl esterase from Burkholderia pyrrocinia B1213 in Escherichia coli and optimization of production conditions. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhilei Fu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Guangsen Fan
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Yuting Zhu
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chao Teng
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Hehe Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Qian Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, College of Biochemical Engineering, Beijing Union University, Beijing, PR China
| | - Ran Yang
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Laboratory of Food Microbiology and Enzyme Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- Laboratory of Food Microbiology and Enzyme Engineering, School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|