1
|
Minium K, Knepp ZJ, Sutton M, Falls T, Bobb S, McKeefery C, Smith K, Root KT. Characterization of a Highly Solvent-Tolerant SGNH Hydrolase Superfamily Lipolytic Enzyme from Sphaerobacter thermophilus. Biochemistry 2025. [PMID: 40392250 DOI: 10.1021/acs.biochem.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Thermophilic microbial lipases that retain activity under harsh conditions are a highly desirable tool for catalysis in numerous biosynthetic and biotechnological applications. In this study, a putative SGNH lipase gene, from Sphaerobacter thermophilus (StSGNH1), was overexpressed using a pMCSG7 plasmid in BL21(DE3) cells. The polyhistidine-tagged enzyme was expressed as inclusion bodies that were readily solubilized using Empigen BB detergent, and the protein was purified to homogeneity using immobilized metal affinity chromatography. The classification of StSGNH1 as a thermophilic and alkaliphilic lipase was supported by its ability to optimally catalyze the hydrolysis of medium-length p-nitrophenol esters at elevated temperature (55 °C) and pH (8-11). Evaluation of the StSGNH1 structure generated by AlphaFold indicated that the catalytic domain was composed of a three-layered α/β/α fold, and molecular docking studies yielded insight into which residues proximal to the active site assist in stabilizing the ligand-enzyme interaction and substrate selectivity. Notably, StSGNH1 was able to carry out ester hydrolysis in the presence of elevated concentrations of detergents, chaotropic reagents, and organic solvents, indicating that it would be suitable for employment in industrial reactions. Tryptophan fluorescence measurements in the presence of guanidine hydrochloride were employed to estimate the free energy of folding for StSGNH1 along a reversible folding pathway. The properties of StSGNH1 would be highly desirable for biotechnological applications.
Collapse
Affiliation(s)
- Kelsey Minium
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Zachary J Knepp
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Morgan Sutton
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| | - Tabatha Falls
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| | - Sara Bobb
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| | - Connor McKeefery
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| | - Kailynn Smith
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| | - Kyle T Root
- Department of Biochemistry, Chemistry, Engineering and Physics, Commonwealth University of Pennsylvania - Lock Haven, Lock Haven, Pennsylvania 17745, United States
| |
Collapse
|
2
|
Fingerhut MA, Henrich L, Lauber C, Broel N, Ghezellou P, Karrer D, Spengler B, Langfelder K, Stressler T, Zorn H, Gand M. Characterization of a GDS(L)-like hydrolase from Pleurotus sapidus with an unusual SGNH motif. AMB Express 2024; 14:98. [PMID: 39225819 PMCID: PMC11372007 DOI: 10.1186/s13568-024-01752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The GDS(L)-like lipase from the Basidiomycota Pleurotus sapidus (PSA_Lip) was heterologously expressed using Trichoderma reesei with an activity of 350 U L-1. The isoelectric point of 5.0 was determined by isoelectric focusing. The novel PSA_Lip showed only 23.8-25.1%, 25.5%, 26.6% and 28.4% identity to the previously characterized GDSL-like enzymes phospholipase, plant lipase, acetylcholinesterase and acetylxylan esterase, from the carbohydrate esterase family 16, respectively. Therefore, the enzyme was purified from the culture supernatant and the catalytic properties and the substrate specificity of the enzyme were investigated using different assays to reveal its potential function. While no phospholipase, acetylcholinesterase and acetylxylan esterase activities were detected, studies on the hydrolysis of ferulic acid methyl ester (~ 8.3%) and feruloylated carbohydrate 5-O-transferuloyl-arabino-furanose (~ 0.8%) showed low conversions of these substrates. By investigating the hydrolytic activity towards p-nitrophenyl-(pNP)-esters with various chain-lengths, the highest activity was determined for medium chain-length pNP-octanoate at 65 °C and a pH value of 8, while almost no activity was detected for pNP-hexanoate. The enzyme is highly stable when stored at pH 10 and 4 °C for at least 7 days. Moreover, using consensus sequence analysis and homology modeling, we could demonstrate that the PSA_Lip does not contain the usual SGNH residues in the actives site, which are usually present in GDS(L)-like enzymes.
Collapse
Affiliation(s)
- Miriam A Fingerhut
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Lea Henrich
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Christiane Lauber
- Hochschule Fresenius - University of Applied Sciences, 65510, Idstein, Germany
| | - Niklas Broel
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Dominik Karrer
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Kim Langfelder
- AB Enzymes GmbH, Feldbergstrasse 78, 64293, Darmstadt, Germany
| | - Timo Stressler
- AB Enzymes GmbH, Feldbergstrasse 78, 64293, Darmstadt, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Huo J, Sun Y, Pan M, Ma H, Lin T, Lv Z, Li Y, Zhong S. Non-targeted metabonomics and transcriptomics revealed the mechanism of mulberry branch extracts promoting the growth of Sanghuangporus vaninii mycelium. Front Microbiol 2022; 13:1024987. [PMID: 36274698 PMCID: PMC9582429 DOI: 10.3389/fmicb.2022.1024987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sanghuangprous vaninii is a wood-inhabiting fungus, and its mycelium and fruiting body show excellent medicinal values. Mulberry is one of the major hosts of S. vaninii, however, the mechanism of mulberry affecting the growth of S. vaninii has not been reported. In the present study, a mulberry-inhabiting strain of S. vaninii was selected to explore the effects of mulberry branch extracts (MBE) on the growth of the strain. Results showed that MBE could significantly promote the growth of S. vaninii mycelium at the concentration of 0.2 g/l. After 16 days of liquid culture, the dry weight of mycelium in 0.2 g/l MBE medium was higher by three times compared with that in the control. The non-targeted metabonomic analysis of the culture medium at different culture times and concentrations was conducted to find the key components in MBE that promoted the growth of S. vaninii mycelium. Under the different concentrations of MBE culture for 10 and 16 days, 22 shared differential metabolites were identified. Next, in accordance with the peak value trend of these metabolites, HPLC–MS and liquid culture validation, four components derived from MBE (i.e., scopoletin, kynurenic acid, 3,5-dihydroxybenzoic acid and 2,4-dihydroxybenzoic acid) could significantly increase the growth rate of mycelium at the concentration of 2 mg/l. Transcriptomic and qRT-PCR analyzes showed that MBE could upregulate hydrolase-related genes, such as serine–glycine–asparaginate–histidine (SGNH) hydrolase, alpha-amylase, poly-beta-hydroxybutyrate (PHB) depolymerase, glycosyl hydrolase family 61, cerato-platanin protein and Fet3, which might enhance the nutrient absorption ability of S. vaninii. Importantly, MBE could significantly increase the content of harmine, androstenedione and vesamicol, which have been reported to possess various medicinal effects. Results suggested that MBE could be an excellent additive for liquid culture of S. vaninii mycelium, and these hydrolase-related genes also provided candidate genes for improving the nutrient absorption capacity of S. vaninii.
Collapse
Affiliation(s)
- Jinxi Huo
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
| | - Yuqing Sun
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
| | - Meiliang Pan
- Department of Agriculture and Rural Affairs, Zhejiang Provincial Center for Agricultural Technology Extension, Hangzhou, China
| | - Huanyan Ma
- Department of Agriculture and Rural Affairs, Zhejiang Provincial Center for Agricultural Technology Extension, Hangzhou, China
| | - Tianbao Lin
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
| | - Zhiqiang Lv
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
| | - Yougui Li
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
- *Correspondence: Yougui Li,
| | - Shi Zhong
- Zhejiang Academy of Agricultural Sciences, Institute of Sericultural and Tea, Hangzhou, China
- Shi Zhong,
| |
Collapse
|
4
|
Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity. N Biotechnol 2022; 70:28-38. [DOI: 10.1016/j.nbt.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
5
|
Ahmed J, Thakur A, Goyal A. Emerging trends on the role of recombinant pectinolytic enzymes in industries- an overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Knepp ZJ, Ghaner A, Root KT. Purification and refolding protocol for cold-active recombinant esterase AaSGNH1 from Aphanizomenon flos-aquae expressed as insoluble inclusion bodies. Prep Biochem Biotechnol 2021; 52:394-403. [PMID: 34355672 DOI: 10.1080/10826068.2021.1952601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial esterases are a highly desirable tool for numerous biosynthetic and biotechnological applications requiring ester bond cleavage. Once identified, microbial esterases are often produced recombinantly in Escherichia coli to enhance yield and ease of purification. In this study a polyhistidine-tagged SGNH esterase gene (AaSGNH1), originating from the cyanobacterium Aphanizomenon flos-aquae, was cloned into an over-expression plasmid and expressed in BL21(DE3) cells. The recombinant esterase enzyme was produced as inactive inclusion bodies which were insoluble in 8 M urea but readily solubilized by the detergent Empigen BB®. Crucially, the procurement of active enzyme required controlled removal of detergent during column chromatography and dialysis steps. The refolded esterase was characterized with respect to its ability to catalyze the cleavage of p-nitrophenol esters of different chain lengths (C2, C8, C16). In addition, the temperature and pH optima were determined and it was found that the enzyme was most active at low temperatures (5-15 °C) and under alkaline conditions (pH 8-10). It was found that the kinetic properties of AaSGNH1 were remarkably similar to other SGNH esterases described thereby validating that the protein was effectively refolded. Overall, this study provides a simple strategy for isolating cold-active recombinant esterase enzyme when expressed as inclusion bodies.
Collapse
Affiliation(s)
- Zachary J Knepp
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| | - Ashlea Ghaner
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| | - Kyle T Root
- Department of Chemistry, Lock Haven University, Lock Haven, PA, USA
| |
Collapse
|
7
|
Xu C, Zhang S, Suo J, Chang R, Xu X, Xu Z, Yang C, Qu C, Liu G. Bioinformatics analysis of PAE family in Populus trichocarpa and responsiveness to carbon and nitrogen treatment. 3 Biotech 2021; 11:370. [PMID: 34295610 DOI: 10.1007/s13205-021-02918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Plant Pectin acetylesterase (PAE) belongs to family CE13 of carbohydrate esterases in the CAZy database. The ability of PAE to regulate the degree of acetylation of pectin, an important polysaccharide in the cell wall, affects the structure of plant cell wall. In this study, ten PtPAE genes were identified and characterized in Populus trichocarpa genome using bioinformatics methods, and the physiochemical properties such as molecular weight, isoelectric points, and hydrophilicity, as well as the secondary and tertiary structure of the protein were predicted. According to phylogenetic analysis, ten PtPAEs can be divided into three evolutionary clades, each of which had similar gene structure and motifs. Tissue-specific expression profiles indicated that the PtPAEs had different expression patterns. Real-time quantitative PCR (RT-qPCR) analysis showed that transcription level of PtPAEs was regulated by different CO2 and nitrogen concentrations. These results provide important information for the study of the phylogenetic relationship and function of PtPAEs in Populus trichocarpa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02918-1.
Collapse
|