1
|
Yang ZX, Deng DH, Gao ZY, Zhang ZK, Fu YW, Wen W, Zhang F, Li X, Li HY, Zhang JP, Zhang XB. OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets. Commun Biol 2024; 7:696. [PMID: 38844522 PMCID: PMC11156888 DOI: 10.1038/s42003-024-06360-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.
Collapse
Grants
- the National Key Research and Development Program of China (Grant Nos. 2019YFA0110803, 2019YFA0110204, and 2021YFA1100900), the National Natural Science Foundation of China (Grant Nos. 82070115 and 81890990), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (Grant Nos. 2022-I2M-2-003, 2022-I2M-2-001, 2021-I2M-1-041, 2021-I2M-1-040, and 2021-I2M-1-001), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant No. 2020-PT310-011), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (Grant No. TSBICIP-KJGG-017), the CAMS Fundamental Research Funds for Central Research Institutes (Grant No. 3332021093), the Haihe Laboratory of Cell Ecosystem Innovation Fund (Grant No. HH23KYZX0005 and HH22KYZX0022), the State Key Laboratory of Experimental Hematology Research Grant (Grant No. Z23-05), and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230081)
Collapse
Affiliation(s)
- Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Dong-Hao Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhu-Ying Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Zhi-Kang Zhang
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China
- Tianjin Institutes of Health Science, 301600, Tianjin, China
| | - Hua-Yu Li
- College of Computer Science and Technology, China University of Petroleum (East China), 266000, Qingdao, China.
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020, Tianjin, China.
- Tianjin Institutes of Health Science, 301600, Tianjin, China.
| |
Collapse
|
2
|
Lanza DG, Mao J, Lorenzo I, Liao L, Seavitt JR, Ljungberg MC, Simpson EM, DeMayo FJ, Heaney JD. An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing. Genesis 2024; 62:e23589. [PMID: 38523431 PMCID: PMC10987075 DOI: 10.1002/dvg.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Cas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus. The X-linked Hprt1 locus was selected because it is a defined integration site that does not influence transgene expression, and breeding of transgenic males generates obligate transgenic females to serve as embryo donors. Using microinjections and electroporation to introduce sgRNAs into zygotes derived from transgenic dams, we demonstrate that Gdf9-Cas9 mediates genome editing as efficiently as exogenous Cas9 at several loci. We show that genome editing efficiency is independent of transgene inheritance, verifying that maternally derived Cas9 facilitates genome editing. We also show that paternal inheritance of Gdf9-Cas9 does not mediate genome editing, confirming that Gdf9-Cas9 is not expressed in embryos. Finally, we demonstrate that off-target mutagenesis is equally rare when using transgenic or exogenous Cas9. Together, these results show that the Gdf9-Cas9 transgene is a viable alternative to exogenous Cas9.
Collapse
Affiliation(s)
- Denise G. Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Jianqiang Mao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Lan Liao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Present address: The Jackson Laboratory 600 Main St., Bar Harbor, Maine, ME, USA 04609
| | - M. Cecilia Ljungberg
- Department of Pediatrics – Neurology, Baylor College of Medicine Houston, TX, USA 77030
- Duncan Neurological Research Institute, Texas Children’s Hospital Houston, TX, USA 77030
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital Department of Medical Genetics, The University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory National Institute of Environmental Health Sciences Research Triangle Park, NC, USA 27709
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, USA 77030
| |
Collapse
|