1
|
Shi J, Ding S, Li C, Chen G, Du F, Wang S, Yue A, Ren K, Yang Z, Xu P, Dong J, Zhao J, Tang Z. Ultrafast DNA detection based on turn-back loop primer-accelerated LAMP (TLAMP). Anal Chim Acta 2024; 1321:343041. [PMID: 39155098 DOI: 10.1016/j.aca.2024.343041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Rapid DNA detection is a long-pursuing goal in molecular detection, especially in combating infectious diseases. Loop-mediated isothermal amplification (LAMP) is a robust and prevailing DNA detection method in pathogen detection, which has been drawing broad interest in improving its performance. Herein, we reported a new strategy and developed a new LAMP variant named TLAMP with a superior amplification rate. In this strategy, the turn-back loop primers (TLPs) were devised by ingeniously extending the 5' end of the original loop primer, which conferred the new role of being the inner primer for TLPs while retaining its original function as the loop primer. In theory, based on the bifunctional TLPs, a total of eight basic dumbbell-like structures and four cyclic amplification pathways were produced to significantly enhance the amplification efficiency of TLAMP. With the enhancing effect of TLPs, TLAMP exhibited a significantly reduced amplification-to-result time compared to the conventional six-primer LAMP (typically 1 h), enabling rapid DNA detection within 20 min. Furthermore, TLAMP proved to be about 10 min faster than the fast LAMP variants reported so far, while still presenting comparable sensitivity and higher repeatability. Finally, TLAMP successfully achieved an ultrafast diagnosis of Monkeypox virus (MPXV), capable of detecting as few as 10 copies (0.67copies/μL) of pseudovirus within 20 min using real-time fluorescence assay or within 30 min using a colorimetric assay, suggesting that the proposed TLAMP offers a sensitive, specific, reliable, and, most importantly, ultrafast DNA detection method when facing the challenges posed by infectious diseases.
Collapse
Affiliation(s)
- Jinyi Shi
- Shanxi Agricultural University, Dept Basic Sci, Taigu, 030801, Shanxi, PR China; Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sheng Ding
- School of Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610052, PR China
| | - Chen Li
- Shanxi Agricultural University, Dept Basic Sci, Taigu, 030801, Shanxi, PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Sifan Wang
- Shanxi Agricultural University, Dept Basic Sci, Taigu, 030801, Shanxi, PR China
| | - Aiqin Yue
- Shanxi Agricultural University, Dept Basic Sci, Taigu, 030801, Shanxi, PR China
| | - Kaiyuan Ren
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhirong Yang
- People's Hospital of De Yang City, Deyang, 618099, PR China
| | - Pei Xu
- People's Hospital of De Yang City, Deyang, 618099, PR China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Jinzhong Zhao
- Shanxi Agricultural University, Dept Basic Sci, Taigu, 030801, Shanxi, PR China.
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Sharma G, Paul P, Dviwedi A, Kaur P, Kumar P, Gupta VK, Saha SB, Kulshrestha S. In silico screening and evaluation of antiviral peptides as inhibitors against ORF9b protein of SARS-CoV-2. 3 Biotech 2024; 14:192. [PMID: 39118822 PMCID: PMC11303353 DOI: 10.1007/s13205-024-04032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
The present study investigated antiviral peptides (AVPs) as inhibitors of SARS-CoV-2 Orf9b protein, a novel target for disrupting the Orf9b-TOM70 complex crucial for viral infection. In silico screening via molecular docking and MD simulations identified AVP1442 and AVP1896 with high binding affinities to Orf9b (- 846.3 kcal mol-1 and - 820 kcal mol-1, respectively), comparable to the Orf9b-TOM70 complex (- 810.99 kcal mol-1). These AVPs interacted with key amino acid residues in Orf9b, including phosphorylation sites. In addition, AVPs also closely interacted with conserved regions in Orf9b. AVP1896 formed a hydrogen bond with Orf9b's threonine at position 84. AVP1442 interacted with Orf9b's leucine at position 15. Favorable Ramachandran plots and compactness during MD simulations for up to 100 ns suggest good stability of formed complexes. These non-toxic AVPs warrant further in vitro and in vivo evaluation, potentially as components of drug cocktails with small molecules or interferon-based therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04032-4.
Collapse
Affiliation(s)
- Gaurav Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, 382424 Gujarat India
| | - Prateek Paul
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, 211007 Uttar Pradesh India
| | - Ananya Dviwedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- Rajiv Gandhi Institute of Information Technology and Biotechnology, Pune, 411045 Maharashtra India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
- Department of Forensic Science, Himachal Pradesh University, Summer Hill, Shimla, 171005 Himachal Pradesh India
| | - V. Kumar Gupta
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Saurav Bhaskar Saha
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, 211007 Uttar Pradesh India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 Himachal Pradesh India
| |
Collapse
|
3
|
Kianfar S, Salimi V, Jahangirifard A, Mirtajani SB, Vaezi MA, Yavarian J, Mokhtari-Azad T, Tavakoli-Yaraki M. 15-lipoxygenase and cyclooxygenase expression profile and their related modulators in COVID-19 infection. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102587. [PMID: 37716021 DOI: 10.1016/j.plefa.2023.102587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The role of the lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in maintaining cellular homeostasis and regulating immune responses promoted us in this study to analyze the pattern of changes in 15-lipoxygenase and cyclooxygenase isoforms and their related cytokines in SARS-CoV-2 infection. METHODS 15-LOX-1, 15-LOX-2, COX-1 and COX-2 gene expression levels were determined using qRT-PCR in nasopharynx specimens from patients with severe [N = 40] and non-severe [N = 40] confirmed SARS-CoV-2 infections and healthy controls. Circulating levels of lL-6, lL-10, PGE2, and IFN-γ were measured in patients and healthy controls using ELISA assay. The associations between the measured variables and the patient's clinic-pathological characteristics were assessed for all groups. RESULTS The expression level of 15-LOX-1 was elevated significantly in male patients with severe infection; although female patients showed a different expression profile. 15-LOX-2 expression level was considerably increased in male patients with severe infection; while changes in its expression remained inconclusive in female patients. The relationship between 15-LOX expression and the male gender was prominent. Both COX isoforms expression showed elevation in male and female patients that were correlated with disease severity. The simultaneous increase in lL-6, PGE2 and IFN-γ levels also decrease in lL-10 in patients with severe infection indicating the possible regulatory network related to the COX and 15-LOX enzymes in the output of the SARS-CoV-2 infection. CONCLUSION The results of this study determined the pattern of possible changes in key enzymes of prostaglandin and eicosanoids synthesis pathway and their mediators, which can be helpful in mapping the SARS-CoV-2 pathogenicity and pharmaceutical approaches.
Collapse
Affiliation(s)
- Sara Kianfar
- Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Jahangirifard
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bashir Mirtajani
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Tehran university of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Doan LH, Chu LW, Huang ZY, Nguyen AT, Lee CY, Huang CL, Chang YF, Hsieh WY, Nguyen TTH, Lin CH, Su CL, Chuang TH, Lai JM, Wang FS, Yang CJ, Liu HK, Ping YH, Huang CYF. Virofree, an Herbal Medicine-Based Formula, Interrupts the Viral Infection of Delta and Omicron Variants of SARS-CoV-2. Front Pharmacol 2022; 13:905197. [PMID: 35860023 PMCID: PMC9289459 DOI: 10.3389/fphar.2022.905197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a threat with the emergence of new variants, especially Delta and Omicron, without specific effective therapeutic drugs. The infection causes dysregulation of the immune system with a cytokine storm that eventually leads to fatal acute respiratory distress syndrome (ARDS) and further irreversible pulmonary fibrosis. Therefore, the promising way to inhibit infection is to disrupt the binding and fusion between the viral spike and the host ACE2 receptor. A transcriptome-based drug screening platform has been developed for COVID-19 to explore the possibility and potential of the long-established drugs or herbal medicines to reverse the unique genetic signature of COVID-19. In silico analysis showed that Virofree, an herbal medicine, reversed the genetic signature of COVID-19 and ARDS. Biochemical validations showed that Virofree could disrupt the binding of wild-type and Delta-variant spike proteins to ACE2 and its syncytial formation via cell-based pseudo-typed viral assays, as well as suppress binding between several variant recombinant spikes to ACE2, especially Delta and Omicron. Additionally, Virofree elevated miR-148b-5p levels, inhibited the main protease of SARS-CoV-2 (Mpro), and reduced LPS-induced TNF-α release. Virofree also prevented cellular iron accumulation leading to ferroptosis which occurs in SARS-CoV-2 patients. Furthermore, Virofree was able to reduce pulmonary fibrosis-related protein expression levels in vitro. In conclusion, Virofree was repurposed as a potential herbal medicine to combat COVID-19. This study highlights the inhibitory effect of Virofree on the entry of Delta and Omicron variants of SARS-CoV-2, which have not had any effective treatments during the emergence of the new variants spreading.
Collapse
Affiliation(s)
- Ly Hien Doan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Li-Wei Chu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zi-Yi Huang
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- ASUS Intelligent Cloud Services, Taipei, Taiwan
| | - Anh Thuc Nguyen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Yin Lee
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Ling Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Wen-Yu Hsieh
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine (NRICM), Ministry of Health and Welfare, Taipei, Taiwan
| | - Trang Thi Huyen Nguyen
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Hsiung Lin
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Li Su
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Jin-Mei Lai
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Kang Liu
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine (NRICM), Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Sahu T, Pande B, Pl M, Verma HK. Liver dysfunction during COVID-19 pandemic: Contributing role of associated factors in disease progression and severity. World J Hepatol 2022; 14:1099-1110. [PMID: 35978661 PMCID: PMC9258249 DOI: 10.4254/wjh.v14.i6.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
In December 2019, a new strain of coronavirus was discovered in China, and the World Health Organization declared it a pandemic in March 2020. The majority of people with coronavirus disease 19 (COVID-19) exhibit no or only mild symptoms such as fever, cough, anosmia, and headache. Meanwhile, approximately 15% develop a severe lung infection over the course of 10 d, resulting in respiratory failure, which can lead to multi-organ failure, coagulopathy, and death. Since the beginning of the pandemic, it appears that there has been consideration that pre-existing chronic liver disease may predispose to deprived consequences in conjunction with COVID-19. Furthermore, extensive liver damage has been linked to immune dysfunction and coagulopathy, which leads to a more severe COVID-19 outcome. Besides that, people with COVID-19 frequently have abnormal liver function, with more significant elevations in alanine aminotransferase and aspartate aminotransferase in patients with severe COVID-19 compared to those with mild/moderate disease. This review focuses on the pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the liver, as well as the use of liver chemistry as a prognostic tool during COVID-19. We also evaluate the findings for viral infection of hepatocytes, and look into the potential mechanisms behind SARS-CoV-2-related liver damage.
Collapse
Affiliation(s)
- Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492001, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492001, Chhattisgarh, India
| | - Manasa Pl
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur 492001, Chhattisgarh, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Munich 85764, Bavaria, Germany.
| |
Collapse
|
6
|
Chloroquine and COVID-19—A systems biology model uncovers the drug’s detrimental effect on autophagy and explains its failure. PLoS One 2022; 17:e0266337. [PMID: 35390060 PMCID: PMC8989232 DOI: 10.1371/journal.pone.0266337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/19/2022] [Indexed: 12/05/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an urgent need for identifying potential therapeutic drugs. In the first half of 2020 tropic antimalarial drugs, such as chloroquine (CQ) or hydroxochloroquine (HCQ) were the focus of tremendous public attention. In the initial periods of the pandemic, many scientific results pointed out that CQ/HCQ could be very effective for patients with severe COVID. While CQ and HCQ have successfully been used against several diseases (such as malaria, autoimmune disease and rheumatic illnesses); long term use of these agents are associated with serious adverse effects (i.e. inducing acute kidney injury, among many others) due to their role in blocking autophagy-dependent self-degradation. Recent experimental and clinical trial data also confirmed that there is no sufficient evidence about the efficient usage of CQ/HCQ against COVID-19. By using systems biology techniques, here we show that the cellular effect of CQ/HCQ on autophagy during endoplasmic reticulum (ER) stress or following SARS-CoV-2 infection results in upregulation of ER stress. By presenting a simple mathematical model, we claim that although CQ/HCQ might be able to ameliorate virus infection, the permanent inhibition of autophagy by CQ/HCQ has serious negative effects on the cell. Since CQ/HCQ promotes apoptotic cell death, here we confirm that addition of CQ/HCQ cannot be really effective even in severe cases. Only a transient treatment seemed to be able to avoid apoptotic cell death, but this type of therapy could not limit virus replication in the infected host. The presented theoretical analysis clearly points out the utility and applicability of systems biology modelling to test the cellular effect of a drug targeting key major processes, such as autophagy and apoptosis. Applying these approaches could decrease the cost of pre-clinical studies and facilitate the selection of promising clinical trials in a timely fashion.
Collapse
|
7
|
Elements and COVID-19: A Comprehensive Overview of Studies on Their Blood/Urinary Levels and Supplementation with an Update on Clinical Trials. BIOLOGY 2022; 11:biology11020215. [PMID: 35205082 PMCID: PMC8869171 DOI: 10.3390/biology11020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary COVID-19 is a disease caused by the SARS-CoV-2 coronavirus spreading mainly through person-to-person contact. It has caused millions of deaths around the world and lasting health problems in individuals who have survived the disease. This review concisely summarizes certain issues related to COVID-19 with a focus on elements and gives an update on clinical trials where some minerals will be tested/have been tested alone or in combination with drugs, vitamins, or plant extracts/herbal formulations in COVID-19 patients and in those at higher COVID-19 risk. Abstract The current report provides a brief overview of the clinical features, hematological/biochemical abnormalities, biomarkers, and AI-related strategies in COVID-19; presents in a nutshell the pharmacological and non-pharmacological therapeutic options; and concisely summarizes the most important aspects related to sociodemographic and behavioral factors as well as comorbidities having an impact on this disease. It also gives a brief outline of the effect of selected elements on immune response and collects data on the levels of micro-/macro-elements and toxic metals in the blood/urine of SARS-CoV-2 infected patients and on supplementation with minerals in COVID-19 subjects. Moreover, this review provides an overview of clinical trials based on the use of minerals alone or in combination with other agents that can provide effective responses toward SARS-CoV-2 infection. The knowledge compiled in this report lays the groundwork for new therapeutic treatments and further research on biomarkers that should be as informative as possible about the patient’s condition and can provide more reliable information on COVID-19 course and prognosis. The collected results point to the need for clarification of the importance of mineral supplementation in COVID-19 and the relationships of the levels of some minerals with clinical improvement.
Collapse
|
8
|
Vafaee R, Jahani Sherafat S, Rezaei Tavirani M, Ahmadi N. Down-regulation of TP53 is a highlighted molecular event in gastric ulcer. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:249-255. [PMID: 36311969 PMCID: PMC9589131 DOI: 10.22037/ghfbb.v15i3.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/02/2022] [Indexed: 01/24/2023]
Abstract
AIM The current study explored the crucial dysregulate proteins and biochemical pathways in gastric ulcer as its main aim. BACKGROUND Gastric ulcer as an acid-related gastrointestinal disease is known as one of the most public gastrointestinal disorders. METHODS A total of 100 proteins from STRING database were analyzed by Cytoscape and its applications to find the central proteins and the related biochemical pathways. Action map analysis was applied to explore regulatory relationships between the critical proteins. RESULTS Network analysis and gene ontology revealed that IL6, ALB, TNF, INS, IL1B, IL10, TP53, CXCL8, and PTGS2 are the highlighted proteins related to gastric ulcer. Six clusters of biochemical pathways, namely "response to external stimulus," "multicellular organismal process," "regulation of biological quality," "cellular response to stimulus," "cellular response to chemical stimulus," and "transport" were identified as the dysregulated pathway in patients. CONCLUSION Down-regulation of TP53 by IL2, PTGS2, and TNF seems to be a main process occurring in gastric ulcer patients.
Collapse
Affiliation(s)
- Reza Vafaee
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics research center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rivas-Santiago B, Jacobo-Delgado Y, Rodriguez-Carlos A. Are Host Defense Peptides and Their Derivatives Ready to be Part of the Treatment of the Next Coronavirus Pandemic? Arch Immunol Ther Exp (Warsz) 2021; 69:25. [PMID: 34529143 PMCID: PMC8444179 DOI: 10.1007/s00005-021-00630-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.
Collapse
Affiliation(s)
- Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico.
| | - Yolanda Jacobo-Delgado
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| | - Adrian Rodriguez-Carlos
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| |
Collapse
|
10
|
Bakhshandeh B, Jahanafrooz Z, Abbasi A, Goli MB, Sadeghi M, Mottaqi MS, Zamani M. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb Pathog 2021; 154:104831. [PMID: 33727169 PMCID: PMC7955574 DOI: 10.1016/j.micpath.2021.104831] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
The third pandemic of coronavirus infection, called COVID-19 disease, began recently in China. The newly discovered coronavirus, entitled SARS-CoV-2, is the seventh member of the human coronaviruses. The main pathogenesis of SARS-CoV-2 infection is severe pneumonia, RNAaemia, accompanied by glass turbidity, and acute cardiac injury. It possesses a single-stranded positive-sense RNA genome which is 60–140 nm in diameter, and has a size of 26–32 kbp. Viral pathogenesis is accomplished with spike glycoprotein through the employment of a membrane-bound aminopeptidase, called the ACE2, as its primary cell receptor. It has been confirmed that various factors such as different national rules for quarantine and various races or genetic backgrounds might influence the mortality and infection rate of COVID-19 in the geographic areas. In addition to various known and unknown factors and host genetic susceptibility, mutations and genetic variabilities of the virus itself have a critical impact on variable clinical features of COVID-19. Although the SARS-CoV-2 genome is more stable than SARS-CoV or MERS-CoV, it has a relatively high dynamic mutation rate with respect to other RNA viruses. It's noteworthy that, some mutations can be founder mutations and show specific geographic patterns. Undoubtedly, these mutations can drive viral genetic variability, and because of genotype-phenotype correlation, resulting in a virus with more/lower/no decrease in natural pathogenic fitness or on the other scenario, facilitating their rapid antigenic shifting to escape the host immunity and also inventing a drug resistance virus, so converting it to a more infectious or deadly virus. Overall, the detection of all mutations in SARS-CoV-2 and their relations with pathological changes is nearly impossible, mostly due to asymptomatic subjects. In this review paper, the reported mutations of the SARS-CoV-2 and related variations in virus structure and pathogenicity in different geographic areas and genotypes are widely investigated. Many studies need to be repeated in other regions/locations for other people to confirm the findings. Such studies could benefit patient-specific therapy, according to genotyping patterns of SARS-CoV-2 distribution.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Matin Babaee Goli
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahya Sadeghi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | | | - Maryam Zamani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|