1
|
Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, Berenjian A, Show PL. Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study. Mol Biotechnol 2024; 66:3573-3582. [PMID: 37957480 DOI: 10.1007/s12033-023-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.
Collapse
Affiliation(s)
- Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Nakhaeitazreji
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Kakian
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jun Wei Roy Chong
- Faculty of Science and Engineering, Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Jojić AA, Liga S, Uţu D, Ruse G, Suciu L, Motoc A, Şoica CM, Tchiakpe-Antal DS. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3233. [PMID: 39599442 PMCID: PMC11598787 DOI: 10.3390/plants13223233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Common Juniper (Juniperus communis L.) is a gymnosperm that stands out through its fleshy, spherical female cones, often termed simply "berries". The cone berries and various vegetative parts (leaves, twigs and even roots) are used in traditional phytotherapy, based on the beneficial effects exerted by a variety of secondary metabolites. While the volatile compounds of Juniperus communis are known for their aromatic properties and have been well-researched for their antimicrobial effects, this review shifts focus to non-volatile secondary metabolites-specifically diterpenes, lignans, and biflavonoids. These compounds are of significant biomedical interest due to their notable pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The aim of this review is to offer an up-to-date account of chemical composition of Juniperus communis and related species, with a primary emphasis on the bioactivities of diterpenes, lignans, and biflavonoids. By examining recent preclinical and clinical data, this work assesses the therapeutic potential of these metabolites and their mechanisms of action, underscoring their value in developing new therapeutic options. Additionally, this review addresses the pharmacological efficacy and possible therapeutic applications of Juniperus communis in treating various human diseases, thus supporting its potential role in evidence-based phytotherapy.
Collapse
Affiliation(s)
- Alina Arabela Jojić
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Sergio Liga
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan, 300223 Timisoara, Romania
| | - Diana Uţu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Graţiana Ruse
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Liana Suciu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Andrei Motoc
- Department of Anatomy-Embryology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Codruța Marinela Şoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Diana-Simona Tchiakpe-Antal
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Khan AH, Hassan S, Aamir M, Khan MW, Haq F, Hayat J, Rizwan M, Ullah A, Ullah I, Zengin G, Farid A. Exploring the Therapeutic Properties of Alga-Based Silver Nanoparticles: Anticancer, Antibacterial, and Free Radical Scavenging Capabilities. Chem Biodivers 2023; 20:e202301068. [PMID: 37647307 DOI: 10.1002/cbdv.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.
Collapse
Affiliation(s)
- Amir Hamza Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Muhammad Aamir
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda-KP, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Junaid Hayat
- Rehman College of Allied Health Science, Peshawar, 25000, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat-KP, Pakistan
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber Pakh-tunkhwa, Pakistan
| | - Izzat Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Khyber Pakh-tunkhwa, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan
| |
Collapse
|
4
|
Hamdy SM, Danial AW, Halawani EM, Shoreit AAM, Hesham AEL, Gad El-Rab SMF. Biofabrication strategy of silver-nanodrug conjugated polyhydroxybutyrate degrading probiotic and its application as a novel wound dressing. Int J Biol Macromol 2023; 250:126219. [PMID: 37567518 DOI: 10.1016/j.ijbiomac.2023.126219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Wound infections with rising incidences of multi-drug resistant bacteria are among the public health problems worldwide. The current study describes wound dressing materials made from biodegradable polyhydroxybutyrate (PHB) combined with AgNPs and gelatin (AgNPs/Gelatin/PHB). Microbial PHB was mixed with gelatin (1:2) to form a polymer matrix which was loaded with different concentrations of AgNPs (8.3-133 μg/mL). The statistical results of AgNPs synthesizing based on Box-Behnken design revealed that 1.247 mM silver nitrate and 24.054 % of Corchorus olitorius leaf extract concentration at pH (8.07) were the optimum values for the biosynthesis. UV-Vis spectroscopy, FTIR study and XRD reflects that nanoparticles are formed. The UV-Vis spectroscopy of Gelatin/PHB/AgNPs exhibited two specific bands at 298 nm and 371 nm, which confirm the formation of the conjugate. AgNPs had MICs and MBCs of (24.9, 24.9, and 12.45 μg/mL) and (33.25, 33.25, and 16.6 μg/mL) against (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). The MIC and MBC of AgNPs/Gelatin/PHB against the same tested bacteria were 31.1 μg and 41.5 μg, respectively. AgNPs/Gelatin/PHB exhibit excellent antimicrobial efficacy against bacteria. Sterilized gauze loaded with 31.1 μg of AgNPs/Gelatin/PHB acted as an effective wound dressing. Thus, the study highlights the importance of wound dressings developed from degradable AgNPs/Gelatin/PHB in enhancing antimicrobial efficiency and facilitating a better wound healing process.
Collapse
Affiliation(s)
| | - Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Eman M Halawani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A M Shoreit
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M F Gad El-Rab
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
5
|
Halawani EMS, Alzahrani SSS, Gad El-Rab SMF. Biosynthesis Strategy of Gold Nanoparticles and Biofabrication of a Novel Amoxicillin Gold Nanodrug to Overcome the Resistance of Multidrug-Resistant Bacterial Pathogens MRSA and E. coli. Biomimetics (Basel) 2023; 8:452. [PMID: 37887583 PMCID: PMC10603918 DOI: 10.3390/biomimetics8060452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The prevalence of multidrug-resistant (MDR) bacteria has recently increased dramatically, seriously endangering human health. Herein, amoxicillin (Amoxi)-conjugated gold nanoparticles (AuNPs) were created as a novel drug delivery system to overcome MDR bacteria. MDR bacteria were isolated from a variety of infection sources. Phenotype, biotype, and 16S rRNA gene analyses were used for isolate identification. Additionally, Juniperus excelsa was used for the production of AuNPs. The conjugation of AuNPs with Amoxi using sodium tri-polyphosphate (TPP) as a linker to produce Amoxi-TPP-AuNPs was studied. The AuNP and Amoxi-TPP-AuNP diameters ranged from 15.99 to 24.71 nm, with spherical and hexagonal shapes. A total of 83% of amoxicillin was released from Amoxi-TPP-AuNPs after 12 h, and after 3 days, 90% of the medication was released. The Amoxi-TPP-AuNPs exhibited superior antibacterial effectiveness against MRSA and MDR E. coli strains. Amoxi-TPP-AuNPs had MICs of 3.6-8 µg mL-1 against the tested bacteria. This is 37.5-83 fold higher compared to values reported in the literature. Amoxi-TPP-AuNPs exhibit a remarkable ability against MRSA and E. coli strains. These results demonstrate the applicability of Amoxi-TPP-AuNPs as a drug delivery system to improve therapeutic action.
Collapse
Affiliation(s)
- Eman M S Halawani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Seham S S Alzahrani
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sanaa M F Gad El-Rab
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
He Z, Yang H, Gu Y, Xie Y, Wu J, Wu C, Song J, Zhao M, Zong D, Du W, Qiao J, Pang Y, Liu Y. Green Synthesis of MOF-Mediated pH-Sensitive Nanomaterial AgNPs@ZIF-8 and Its Application in Improving the Antibacterial Performance of AgNPs. Int J Nanomedicine 2023; 18:4857-4870. [PMID: 37662688 PMCID: PMC10473413 DOI: 10.2147/ijn.s418308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Herein, an emerging drug delivery system was constructed based on zeolite imidazole backbone (ZIF-8) to improve antibacterial defects of nanosilver (AgNPs), such as easily precipitated and highly cytotoxic. Methods The homogeneous dispersion of AgNPs on ZIF-8 was confirmed by UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM. The appropriate AgNPs loading ratio on ZIF-8 was screened through the cell and antibacterial experiments based on biosafety and antibacterial performance. The optimal environment for AgNPs@ZIF-8 to exert antibacterial performance was probed in the context of bacterial communities under different acid-base conditions. The potential mechanism of AgNPs@ZIF-8 to inhibit the common clinical strains was investigated by observing the biofilm metabolic activity and the level of reactive oxygen species (ROS) in bacteria. Results The successful piggybacking of AgNPs by ZIF-8 was confirmed using UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM characterization methods. Based on the bacterial growth curve (0-24 hours), the antibacterial ability of AgNPs@ZIF-8 was found to be superior to AgNPs. When the mass ratio of ZIF-8 and AgNPs was 1:0.25, the selection of AgNPs@ZIF-8 was based on its superior antimicrobial efficacy and enhanced biocompatibility. Notably, under weakly acidic bacterial microenvironments (pH=6.4), AgNPs@ZIF-8 demonstrated a more satisfactory antibacterial effect. In addition, experiments on biofilms showed that concentrations of AgNPs@ZIF-8 exceeding 1×MIC resulted in more than 50% biofilm removal. The nanomedicine was found to increase ROS levels upon detecting the ROS concentration in bacteria. Conclusion Novel nanocomposites consisting of low cytotoxicity drug carrier ZIF-8 loaded with AgNPs exhibited enhanced antimicrobial effects compared to AgNPs alone. The pH-responsive nano drug delivery system, AgNPs@ZIF-8, exhibited superior antimicrobial activity in a mildly acidic environment. Moreover, AgNPs@ZIF-8 effectively eradicated pathogenic bacterial biofilms and elevated the intracellular level of ROS.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Huan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yufan Gu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yuhan Xie
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jianan Wu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Chen Wu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jiawei Song
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Maofang Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Da Zong
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Wenlong Du
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jiaju Qiao
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yipeng Pang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| |
Collapse
|
7
|
Moorthy K, Chang KC, Yang HH, Su WM, Chiang CK, Yuan Z. Recent developments in detection and therapeutic approaches for antibiotic-resistant bacterial infections. J Food Drug Anal 2023; 31:1-19. [PMID: 37224551 PMCID: PMC10208662 DOI: 10.38212/2224-6614.3433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 08/27/2023] Open
Abstract
Owing to the widespread emergence and proliferation of antibiotic-resistant bacteria, the therapeutic benefits of antibiotics have been reduced. In addition, the ongoing evolution of multidrug-resistant pathogens poses a challenge for the scientific community to develop sensitive analytical methods and innovative antimicrobial agents for the detection and treatment of drug-resistant bacterial infections. In this review, we have described the antibiotic resistance mechanisms that occur in bacteria and summarized the recent developments in detection strategies for monitoring drug resistance using different diagnostic methods in three aspects, including electrostatic attraction, chemical reaction, and probe-free analysis. Additionally, to understand the effective inhibition of drug-resistant bacterial growth by recent nano-antibiotics, the underlying antimicrobial mechanisms and efficacy of biogenic silver nanoparticles and antimicrobial peptides, which have shown promise, and the rationale, design, and potential improvements to these methods are also highlighted in this review. Finally, the primary challenges and future trends in the rational design of facile sensing platforms and novel antibacterial agents against superbugs are discussed.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 97401,
Taiwan, ROC
| | - Kai-Chih Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970,
Taiwan, ROC
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 970,
Taiwan, ROC
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970,
Taiwan, ROC
| | - Wen-Min Su
- Department of Life Science, National Dong Hwa University, Shoufeng, Hualien, 97401,
Taiwan, ROC
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 97401,
Taiwan, ROC
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029,
China
| |
Collapse
|
8
|
Abo-Amer AE, Gad El-Rab SMF, Halawani EM, Niaz AM, Bamaga MS. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications. J Microbiol Biotechnol 2022; 32:1537-1546. [PMID: 36379700 PMCID: PMC9843750 DOI: 10.4014/jmb.2208.08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.
Collapse
Affiliation(s)
- Aly E. Abo-Amer
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa M. F. Gad El-Rab
- Department of Botany and Microbiology, Faculty of Science, Assuit University, Assiut 71516, Egypt,Corresponding author Phone: +201025475454 E-mail:
| | - Eman M. Halawani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ameen M. Niaz
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Bamaga
- Department of Molecular Pathology, Al-Hada Armed Forces Hospital, P.O. Box 1347, HHRC 479, Taif, Saudi Arabia
| |
Collapse
|
9
|
Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102180. [PMID: 36297615 PMCID: PMC9608461 DOI: 10.3390/pharmaceutics14102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges. Among them, the very low solubility in water and instability under acidic conditions cause a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. Despite the interest in ERY-(nano)formulations, a review on them is lacking. Therefore, this work was aimed at reviewing all efforts made to encapsulate ERY in formulations of various chemical compositions, sizes and morphologies. In addition, their preparation/synthesis, physico-chemical properties and performances were carefully analysed. Limitations of these studies, particularly the quantification of ERY, are discussed as well.
Collapse
|
10
|
Alsubhi NS, Alharbi NS, Felimban AI. Optimized Green Synthesis and Anticancer Potential of Silver Nanoparticles Using Juniperus procera Extract Against Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Silver nanoparticles (AgNPs) have been considered promising candidates for medical practices in various fields. This study proposed an efficient, economical, uncomplicated, and reliable method to synthesize AgNPs utilizing leaf and fruit extracts of Juniperus procera (J. procera)
as capping, reducing, and stabilizing agents. The study includes optimizing the green synthesis conditions to produce stable AgNPs with high yields, acceptable particle size, and shape, hence, AgNPs may be used for different medical purposes through the improvement of their properties. Several
spectroscopic and other analyses performed characterization of the fabricated AgNPs, and the results show stable and spherical AgNPs between 14 and 18 nm in size. The study also evaluated the anticancer activities of the biosynthesized AgNPs using J. procera fruit and leaf extracts
against in vitro lung cancer A549 and H1975 cells. The results demonstrate the high toxicity of the biosynthesized AgNPs against in vitro lung cancer cells, supporting therapeutic and biomedical applications of AgNPs.
Collapse
Affiliation(s)
- Nehad S. Alsubhi
- Department of Biology, Collage of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Njud S. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Afnan I. Felimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Ashour AA, Basha S, Felemban NH, Enan ET, Alyamani AA, Gad El-Rab SMF. Antimicrobial Efficacy of Glass Ionomer Cement in Incorporation with Biogenic Zingiber officinale Capped Silver-Nanobiotic, Chlorhexidine Diacetate and Lyophilized Miswak. Molecules 2022; 27:528. [PMID: 35056835 PMCID: PMC8781574 DOI: 10.3390/molecules27020528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5-14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.
Collapse
Affiliation(s)
- Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Nayef H. Felemban
- Preventive Dentistry Department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Enas T. Enan
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura 35511, Egypt;
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
| | - Sanaa M. F. Gad El-Rab
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
12
|
El-Rab SMFG, Basha S, Ashour AA, Enan ET, Alyamani AA, Felemban NH. Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms. J Microbiol Biotechnol 2021; 31:1656-1666. [PMID: 34489380 PMCID: PMC9706032 DOI: 10.4014/jmb.2106.06008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 μg/ml, 4-5 μg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.
Collapse
Affiliation(s)
- Sanaa M. F. Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA,Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt,Corresponding author Phone: +00201025475454 E-mail:
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| | - Amal A. Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 21431, Saudi Arabia
| | - Enas Tawfik Enan
- Dental Biomaterials, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia,Dental Biomaterials, Faculty of Dentistry, Mansoura University, Dakahleya 35516, Egypt
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA
| | - Nayef H. Felemban
- Preventive dentistry department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| |
Collapse
|
13
|
Rai M, Ingle AP, Trzcińska-Wencel J, Wypij M, Bonde S, Yadav A, Kratošová G, Golińska P. Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2901. [PMID: 34835665 PMCID: PMC8624974 DOI: 10.3390/nano11112901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
Collapse
Affiliation(s)
- Mahendra Rai
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| | - Shital Bonde
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Alka Yadav
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.Y.)
| | - Gabriela Kratošová
- Nanotechnology Centre, CEET, VŠB–Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic;
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.T.-W.); (M.W.)
| |
Collapse
|