1
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
2
|
Valle Vargas MF, Quintanilla-Carvajal MX, Villamil-Diaz L, Ruiz Pardo RY, Moyano FJ. Assessment of Encapsulated Probiotic Lactococcus lactis A12 Viability Using an In Vitro Digestion Model for Tilapia. Animals (Basel) 2024; 14:1981. [PMID: 38998093 PMCID: PMC11240612 DOI: 10.3390/ani14131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Probiotics face harsh conditions during their transit through the gastrointestinal tract (GIT) of fish because of low-pH environments and intestine fluid. Therefore, the evaluation of probiotic viability under simulated gastrointestinal conditions is an important step to consider for probiotic supplementation in fish feed prior to in vivo trials. Therefore, this study aimed to evaluate the effect of stomach and intestinal simulated conditions on the viability of encapsulated Lactococcus lactis A12 using an in vitro digestion model for tilapia. A Box Behnken design was used to evaluate the potential effect of three factors, namely stomach pH, residence time in the stomach, and enzyme quantity, on the viability of encapsulated Lactococcus lactis A12. As the main results, low pH (4.00), long residence time (4 h), and enzyme quantity (2.68 U of total protease activity) led to lower final cell counts after the phases of the stomach and intestine. Encapsulated probiotic bacteria showed higher viability (p < 0.05) and antibacterial activity (p < 0.05) against the pathogen Streptococcus agalactiae than non-encapsulated bacteria. The results suggest that L. lactis A12 survives in GIT conditions and that the proposed in vitro model could be used to explore the viability of probiotic bacteria intended for fish feed supplementation.
Collapse
Affiliation(s)
- Marcelo Fernando Valle Vargas
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - Luisa Villamil-Diaz
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz Pardo
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | | |
Collapse
|
3
|
do Carmo Alves AP, do Carmo Alves A, Ferreira Rodrigues RA, da Silva Cerozi B, Possebon Cyrino JE. Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. J Microencapsul 2023; 40:491-501. [PMID: 37254699 DOI: 10.1080/02652048.2023.2220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
To improve survival during storage and exposure to adverse conditions, Bacillus subtilis was microencapsulated with oat β-glucan by spray-drying technology. The characterisation of the microcapsules was designed to compare free and microencapsulated cells through exposure to simulated gastric fluids (SGF) throughout storage for 90 days at different temperatures. The characterisation included analysis of efficiency, morphology, moisture, water activity, hygroscopicity, particle size, and zeta potential. The microcapsules presented a particle size of 1.5 ± 0.34 μm and an encapsulation efficiency of 77.9 ± 3.06%. After SGF, the survival of microencapsulated cells was 8.4 ± 0.07 log CFU mL-1 while that of free cells was 7.6 ± 0.06 log CFU mL-1. After 90 days of storage, only microencapsulated cells remained above 6 log-unit of viability. In conclusion, spray-drying technique combined with the addition of oat β-glucan proved to be an efficient method to protect B. subtilis under storage and SGF with potential application in fish feed.
Collapse
Affiliation(s)
- Angélica Priscila do Carmo Alves
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - Amanda do Carmo Alves
- Departamento de Biotecnologia Vegetal, Universidade Federal de Lavras [UFLA], Lavras, Minas Gerais, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas [CPQBA], Universidade Estadual de Campinas [UNICAMP], Campinas, São Paulo, Brazil
| | - Brunno da Silva Cerozi
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| |
Collapse
|
4
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|