1
|
Li L, Quan J, Liu H, Yu H, Chen H, Xia C, Zhao S, Gao C. Identification of the genetic characteristics of copy number variations in experimental specific pathogen-free ducks using whole-genome resequencing. BMC Genomics 2024; 25:17. [PMID: 38166615 PMCID: PMC10759622 DOI: 10.1186/s12864-023-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
- College of Animal Science & Technology, Ningxia University, Yinchuan, 750021, P.R. China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China.
| |
Collapse
|
2
|
Kooverjee BB, Soma P, van der Nest MA, Scholtz MM, Neser FWC. Copy Number Variation Discovery in South African Nguni-Sired and Bonsmara-Sired Crossbred Cattle. Animals (Basel) 2023; 13:2513. [PMID: 37570321 PMCID: PMC10417447 DOI: 10.3390/ani13152513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Crossbreeding forms part of Climate-Smart beef production and is one of the strategies to mitigate the effects of climate change. Two Nguni-sired and three Bonsmara-sired crossbred animals underwent whole genome sequencing. Following quality control and file preparation, the sequence data were investigated for genome-wide copy number variation (CNV) using the panelcn.MOPS tool. A total of 355 CNVs were identified in the crossbreds, of which 274 were unique in Bonsmara-sired crossbreds and 81 unique in the Nguni-sired crossbreds. Genes that differed in copy number in both crossbreds included genes related to growth (SCRN2, LOC109572916) and fertility-related factors (RPS28, LOC1098562432, LOC109570037). Genes that were present only in the Bonsmara-sired crossbreds included genes relating to lipid metabolism (MAF1), olfaction (LOC109569114), body size (HES7), immunity (LOC10957335, LOC109877039) and disease (DMBT1). Genes that were present only in the Nguni-sired crossbreds included genes relating to ketosis (HMBOX1) and amino acid transport (LOC109572916). Results of this study indicate that Nguni and Bonsmara cattle can be utilized in crossbreeding programs as they may enhance the presence of economically important traits associated with both breeds. This will produce crossbred animals that are good meat producers, grow faster, have high fertility, strong immunity and a better chance of producing in South Africa's harsh climate conditions. Ultimately, this study provides new genetic insights into the adaptability of Nguni and Bonsmara crossbred cattle.
Collapse
Affiliation(s)
| | - Pranisha Soma
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
| | - Magrieta A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Michiel M. Scholtz
- Animal Production, Agricultural Research Council, Pretoria 0062, South Africa;
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| | - Frederick W. C. Neser
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| |
Collapse
|
3
|
Goat MyoD1: mRNA expression, InDel and CNV detection and their associations with growth traits. Gene 2023; 866:147348. [PMID: 36898510 DOI: 10.1016/j.gene.2023.147348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The Myogenic differentiation 1 (MyoD1) gene is a crucial regulator of muscle formation and differentiation. However, there are few studies on the mRNA expression pattern of the goat MyoD1 gene and its effect on goat growth and development. To address this, we investigated the mRNA expression of the MyoD1 gene in several tissues of fetal and adult goats, containing heart, liver, spleen, lung, kidney and skeletal muscle. The results focused on the expression of the MyoD1 gene in skeletal muscle of fetal goats was much higher than adult goats, suggesting its important role in skeletal muscle formation and development. Following, a total of 619 Shaanbei White Cashmere goats (SBWCs) were used to monitor the InDel (Insertion/Deletion) and CNV (Copy Number Variation) variations of the MyoD1 gene. Three InDel loci were identified, and there was no significant correlation with goat growth traits. Furthermore, a CNV locus containing the MyoD1 gene exon with three types (Loss type, Normal type, Gain type) were identified. The association analysis results showed that the CNV locus was significantly associated with body weight, height at hip cross, heart girth and hip width in SBWCs (P < 0.05). Meanwhile, the Gain type of CNV exhibited the best growth traits and good consistency among three types in goats, suggesting its potential as a DNA marker for marker-assisted breeding of goats. Overall, our study provided a scientific basis for breeding goats with better growth and development traits.
Collapse
|
4
|
Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs. Animals (Basel) 2022; 12:ani12111382. [PMID: 35681846 PMCID: PMC9179479 DOI: 10.3390/ani12111382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Copy number variation (CNV) is a type of variant that may influence meat quality of, for example intramuscular fat (IMF). In this study, a genome-wide association study (GWAS) was then performed between CNVs and IMF in a pig F2 resource population. A total of 19 CNVRs were found to be significantly associated with IMF. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3′UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings. Abstract Intramuscular fat (IMF) is a key meat quality trait. Research on the genetic mechanisms of IMF decomposition is valuable for both pork quality improvement and the treatment of obesity and type 2 diabetes. Copy number variations (CNVs) are a type of variant that may influence meat quality. In this study, a total of 1185 CNV regions (CNVRs) including 393 duplicated CNVRs, 432 deleted CNVRs, and 361 CNVRs with both duplicated and deleted status were identified in a pig F2 resource population using next-generation sequencing data. A genome-wide association study (GWAS) was then performed between CNVs and IMF, and a total of 19 CNVRs were found to be significantly associated with IMF. QTL colocation analysis indicated that 3 of the 19 CNVRs overlapped with known QTLs. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3′UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. Sequence alignment and Alphafold2 structure prediction results indicated that the two alternative splices of PELP1 have a 23 AA sequence variation and a helix-fold structure variation. This region is located in the region of interaction between PELP1 and other proteins which have been reported to be significantly associated with fat deposition or insulin resistance. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. In conclusion, we found some CNVRs, especially CNV150, located in PELP1 that affect IMF. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings.
Collapse
|