1
|
You C, Wang C, Ma Z, Yu Q, Liu S. Review on application of silk fibroin hydrogels in the management of wound healing. Int J Biol Macromol 2025; 298:140082. [PMID: 39832605 DOI: 10.1016/j.ijbiomac.2025.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care. Its remarkable biocompatibility facilitates seamless integration with host tissues, thereby minimizing the risk of rejection or adverse reactions. Furthermore, its intrinsic degradability permits controlled release of therapeutic agents, promoting an optimal microenvironment conducive to healing. This review investigates the multifaceted potential of silk fibroin specifically as a wound dressing material and examines the intricate nuances associated with its application in hydrogels for wound healing, aiming to furnish a thorough overview for both researchers and clinicians. By scrutinizing underlying mechanisms, current applications, and prospective directions, we aspire to cultivate new insights and inspire innovative strategies within this rapidly evolving field.
Collapse
Affiliation(s)
- Chang You
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Changkun Wang
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Zhenghao Ma
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Qianhui Yu
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Kumar R V, Gosipatala SB, Kumar R, Srivastava D, Singh V, Suman K, Tripathi DK, Verma A, Mishra A, Vishwakarma KK, Singh SA, Pandey T, Agarwal S, Elyies M, Singh I, Sah PK, Sharma C, Parag R, Saxena P, Raj A, Tripathi A, Devi P, Poluri KM. Characterization, Antioxidant, and Antimicrobial Properties of Mulberry Lattices. ACS OMEGA 2023; 8:47758-47772. [PMID: 38144072 PMCID: PMC10733998 DOI: 10.1021/acsomega.3c06069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
In order to find the most advantageous bioactive compounds from mulberry latex for drug development in the near future, this study was conducted to characterize and evaluate antioxidant and antimicrobial properties from four different mulberry lattices (BR-2, S-1, AR-14, and S-146). The characterization of the lattices was performed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, gas chromatography coupled to mass spectroscopy, and Fourier transform infrared spectroscopy. Further, screenings of the antioxidant and antimicrobial potential of selected lattices were performed in vitro using 2,2-diphenyl-1-picrylhydrazyl assay and agar well diffusion methods, respectively. Interestingly, the outcome of the current study revealed that tested mulberry lattices contain a considerable amount of bioactive phytoconstituents, particularly antimicrobial and antioxidant compounds, as revealed by chromatographic analysis. BR-2 latex was found to have significant antioxidant activity (75%) followed by S-146 (64.6%) and AR-14 (52.9%). The maximum antimicrobial activity was found in BR-2 latex compared to other tested latex varieties. The results of this investigation showed that mulberry latex from the BR-2 type may successfully control both bacterial and fungal infections, with the added benefit of having enhanced antioxidant capabilities.
Collapse
Affiliation(s)
- Venkatesh Kumar R
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sunil Babu Gosipatala
- Departmentof
Biotechnology, Babasaheb Bhimrao Ambedkar
University, Lucknow, Uttar Pradesh 226025, India
| | - Ram Kumar
- Department
of Zoology, Shri Venkateshwara University, Gajraula, Uttar Pradesh 244236, India
| | - Devika Srivastava
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Vandana Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Kusumala Suman
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Deepak Kumar Tripathi
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Abhishek Verma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Akash Mishra
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Karan Kumar Vishwakarma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Stuti Annapurna Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Tripti Pandey
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sanskrati Agarwal
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Mohd Elyies
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Ishani Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Pinky Kumari Sah
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Chaya Sharma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Rishabh Parag
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Pragya Saxena
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Akanksha Raj
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Anshika Tripathi
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Poonam Devi
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|