1
|
Kim JI, Jeon SG, Kim KA, Kim YJ, Song EJ, Choi J, Ahn KJ, Kim CJ, Chung HY, Moon M, Chung H. The pharmacological stimulation of Nurr1 improves cognitive functions via enhancement of adult hippocampal neurogenesis. Stem Cell Res 2016; 17:534-543. [PMID: 27788475 DOI: 10.1016/j.scr.2016.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 11/26/2022] Open
Abstract
The nuclear receptor related-1 (Nurr1) protein plays an important role in both the development of neural precursor cells (NPCs) and cognitive functions. Despite its relevance, the effects of Nurr1 on adult hippocampal neurogenesis have not been thoroughly investigated. Here we used RT-PCR, western blot, and immunocytochemistry to show that adult hippocampal NPCs abundantly express Nurr1. We then examined the effect of Nurr1 activation on adult hippocampal NPCs using amodiaquine (AQ), an anti-malarial drug that was recently discovered to be a Nurr1 agonist. Cell proliferation assay showed that AQ significantly increased cell proliferation. AQ-treated NPCs showed increased levels of phosphorylation of Akt and ERK1/2 whereas AQ-treated Nurr1 siRNA-transfected NPCs showed no changes in those levels. Further immunocytochemical and immunohistochemical analyses confirmed the stimulating effect of Nurr1 agonist on the proliferation and differentiation of adult hippocampal NPCs both in vivo and in vitro. In addition to its effects on proliferation and differentiation of NPCs, AQ-treated mice showed a significant enhancement of both short- and long-term memory in the Y-maze and the novel object recognition test. These data suggest that activation of Nurr1 may enhance cognitive functions by increasing adult hippocampal neurogenesis and also indicate that Nurr1 may be used as a therapeutic target for the treatment of memory disorders and cognitive impairment observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junghyun Choi
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Chong-Jin Kim
- Department of Cardiology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Ho Yeon Chung
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea.
| |
Collapse
|