1
|
Cho H, Park SY, Youn D, Park KE, Joo JH, Lee MH, Shin DS. Fabrication of single cell microarrays on a double-layered hydrogel for mitochondrial activity monitoring. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Tahk D, Bang S, Hyung S, Lim J, Yu J, Kim J, Jeon NL, Kim HN. Self-detachable UV-curable polymers for open-access microfluidic platforms. LAB ON A CHIP 2020; 20:4215-4224. [PMID: 33170919 DOI: 10.1039/d0lc00604a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study presents an ultraviolet (UV)-curable polymer which is applicable to open-access microfluidic platforms. The UV-curable polymer was prepared by mixing trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), polyethylene glycol-diacrylate (PEG-DA), and Irgacure 184. The polymer resin is optically transparent before and after UV-assisted curing and showed good biocompatibility when culturing multiple types of cells on the nanopatterned polymer substrate. The polymer has good adhesion with poly(dimethylsiloxane) (PDMS) even under large deformation and showed a low swelling ratio when exposed to water, suggesting a possibility to be used as a substrate for an organ on a chip. Furthermore, because the polymers have controllable hydrolysis ability depending on the composition, long-term 3D cell culture and subsequent biological analysis with harvested cells are possible. The self-detachable synthesized UV-curable polymer may help the advancement of biomedical studies using in vitro cell culture.
Collapse
Affiliation(s)
- Dongha Tahk
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Sujin Hyung
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jungeun Lim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - James Yu
- Interdisciplinary Program for Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea. and Interdisciplinary Program for Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea and World Class University Program on Multiscale Mechanical Design, Seoul National University, Seoul 08826, Republic of Korea and Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. and Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Samson AAS, Park S, Kim SY, Min DH, Jeon NL, Song JM. Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res 2018; 29:44-52. [PMID: 29262741 DOI: 10.1080/08982104.2017.1420081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance to chemotherapy is a key factor in the inefficacy of various forms of treatments for cancer. In the present study, chemo-resistant proteins, including glucose-regulated protein 78 (GRP78)/clusterin (CLU) targeted 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes, were developed as a delivery system for co-delivery of camptothecin (CPT) and GRP78 siRNA/CLU siRNA. Their drug/gene co-deliveries were quantitatively assessed in cancer stem cells (CSC) and MCF-7 cells. DOTAP-CPT/siRNA were prepared via electrostatic interaction on GRP78 siRNA or CLU siRNA. The size and ζ-potential of liposomes and lipoplexes were measured by dynamic light scattering techniques and electrophoretic light scattering spectrophotometry. The lipoplexes formation was tested by using gel electrophoresis. Immunofluorescence analysis showed that the expression level of CLU and GRP78 were significantly elevated in CSC compared to MCF-7 cells. Transfection and drug-delivery efficiency of DOTAP-CPT/siRNA were quantitatively compared with Lipofectamine 2000. Compared to free CPT, DOTAP-CPT-siCLU delivery in CSC and MCF-7 cells increased transfection efficiency and chemo-sensitivity by 4.1- and 5.9-fold, respectively. On the other hand, DOTAP-CPT-siGRP78 delivery increased transfection efficiency and chemo sensitivity by 4.4- and 6.2-fold in CSC and MCF-7 cells, respectively, compared to free CPT. It is significant that 3 ± 1.2-fold increase in transfection efficiency was achieved by lipofectamine. Consequently, an increase in anti-cancer/gene silencing efficacy was quantitatively observed as an effect of DOTAP-CPT/siRNA treatment, which was relatively higher than lipofectamine treatment. Conclusively, our experimental data quantitatively demonstrate that using DOTAP-CPT-siRNA specifically targeting (CSCs) chemo-resistant protein in vitro offers substantial potential for synergistic anti-cancer therapy.
Collapse
Affiliation(s)
| | - Solji Park
- a College of Pharmacy , Seoul National University , Seoul , Korea
| | - Sung-Yon Kim
- b Department of Biophysics and Chemical Biology , Seoul National University , Seoul , Korea
| | - Dal-Hee Min
- c Department of Chemistry , Seoul National University , Seoul , Korea
| | - Noo Li Jeon
- d School of Mechanical and Aerospace Engineering , Seoul National University , Seoul , Korea
| | - Joon Myong Song
- a College of Pharmacy , Seoul National University , Seoul , Korea
| |
Collapse
|
5
|
Kang DH, Jung HS, Kim K, Kim J. Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42210-42216. [PMID: 29111663 DOI: 10.1021/acsami.7b14086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most solid-state biosensor platforms require a specific immobilization chemistry and a bioconjugation strategy separately to tether sensory molecules to a substrate and attach specific receptors to the sensory unit, respectively. We developed a mussel-inspired universal conjugation method that enables both surface immobilization and bioconjugation at the same time. By incorporating dopamine or catechol moiety into self-signaling polydiacetylene (PDA) liposomes, we demonstrated efficient immobilization of the PDA liposomes to a wide range of substrates, without any substrate modification. Moreover, receptor molecules having a specificity toward a target molecule can also be attached to the immobilized PDA liposome layer without any chemical modification. We applied our mussel-inspired conjugation method to a droplet-array biosensor by exploiting the hydrophilic nature of PDA liposomes coated on a hydrophobic polytetrafluoroethylene surface and demonstrated selective and sensitive detection of vascular endothelial growth factor down to 10 nM.
Collapse
Affiliation(s)
- Do Hyun Kang
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | | | | | - Jinsang Kim
- Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
- Macromolecular Science and Engineering, Chemical Engineering, Biomedical Engineering, Chemistry, and Biointerface Institute, University of Michigan , Ann Arbor 48109, United States
| |
Collapse
|
6
|
Ning R, Zhuang Q, Lin JM. Biomaterial-Based Microfluidics for Cell Culture and Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Coil Interpenetration, Segment Aggregation and Adsorption of PEG at Water/Air Interface. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-1959-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Park HS, Lee W, Nam YS. Elution dynamics of M13 bacteriophage bound to streptavidin immobilized in a microfluidic channel. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-016-0107-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|