1
|
Schmitz M, Deutschmann B, Markert N, Backhaus T, Brack W, Brauns M, Brinkmann M, Seiler TB, Fink P, Tang S, Beitel S, Doering JA, Hecker M, Shao Y, Schulze T, Weitere M, Wild R, Velki M, Hollert H. Demonstration of an aggregated biomarker response approach to assess the impact of point and diffuse contaminant sources in feral fish in a small river case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150020. [PMID: 34508932 DOI: 10.1016/j.scitotenv.2021.150020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The assessment of the exposure of aquatic wildlife to complex environmental mixtures of chemicals originating from both point and diffuse sources and evaluating the potential impact thereof constitutes a significant step towards mitigating toxic pressure and the improvement of ecological status. In the current proof-of-concept study, we demonstrate the potential of a novel Aggregated Biomarker Response (ABR) approach involving a comprehensive set of biomarkers to identify complex exposure and impacts on wild brown trout (Salmo trutta fario). Our scenario used a small lowland river in Germany (Holtemme river in the Elbe river catchment) impacted by two wastewater treatment plants (WWTP) and diffuse agricultural runoff as a case study. The trout were collected along a pollution gradient (characterised in a parallel study) in the river. Compared to fish from the reference site upstream of the first WWTP, the trout collected downstream of the WWTPs showed a significant increase in micronucleus formation, phase I and II enzyme activities, and oxidative stress parameters in agreement with increasing exposure to various chemicals. By integrating single biomarker responses into an aggregated biomarker response, the two WWTPs' contribution to the observed toxicity could be clearly differentiated. The ABR results were supported by chemical analyses and whole transcriptome data, which revealed alterations of steroid biosynthesis and associated pathways, including an anti-androgenic effect, as some of the key drivers of the observed toxicity. Overall, this combined approach of in situ biomarker responses complemented with molecular pathway analysis allowed for a comprehensive ecotoxicological assessment of fish along the river. This study provides evidence for specific hazard potentials caused by mixtures of agricultural and WWTP derived chemicals at sublethal concentrations. Using aggregated biomarker responses combined with chemical analyses enabled an evidence-based ranking of sites with different degrees of pollution according to toxic stress and observed effects.
Collapse
Affiliation(s)
- Markus Schmitz
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany
| | - Björn Deutschmann
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany
| | - Nele Markert
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | - Werner Brack
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; Helmholtz Centre for Environmental Research UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Mario Brauns
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas-Benjamin Seiler
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Ruhr District Institute of Hygiene, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Patrick Fink
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany; Helmholtz-Centre for Environmental Research (UFZ), Department Aquatic Ecosystem Analysis and Management, Brückstraße 3a, 39114 D Magdeburg, Germany
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Shawn Beitel
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Jon A Doering
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ying Shao
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, PR China
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Markus Weitere
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Romy Wild
- Helmholtz Centre for Environmental Research UFZ, Department River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany
| | - Mirna Velki
- Institute for Environmental Research, RWTH Aachen University, Worringer Weg 1, 52070 Aachen, Germany; Department of Biology, Josip Juraj Strossmayer University of Osijek, Ul. Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Yamindago A, Lee N, Lee N, Jo Y, Woo S, Yum S. Fluoxetine in the environment may interfere with the neurotransmission or endocrine systems of aquatic animals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112931. [PMID: 34715500 DOI: 10.1016/j.ecoenv.2021.112931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Antidepressants are extensively used to treat the symptoms of depression in humans, and the environmentally discharged drugs potentially threaten aquatic organisms. In this study, the acute toxic effects of fluoxetine (FLX) were investigated in two aquatic organisms, the freshwater polyp (Hydra magnipapillata) and Javanese medaka (Oryzias javanicus). The median lethal concentration (LC50) of FLX in H. magnipapillata was 3.678, 3.082, and 2.901 mg/L after 24, 48, and 72 h, respectively. Morphological observations of the FLX-exposed H. magnipapillata showed that 1.5 mg/L FLX induced the contraction of the tentacles and body column. The LC50 of FLX in O. javanicus was 2.046, 1.936, 1.532, and 1.237 mg/L after 24, 48, 72, and 96 h, respectively. Observation of the behavior of the FLX-exposed fish showed that FLX reduced their swimming performance at a minimum concentration of 10 µg/L. The half-maximal effective concentration (EC50) of FLX for swimming behavior in O. javanicus was 0.135, 0.108, and 0.011 mg/L after 12, 24, and 96 h, respectively. Transcriptomic analyses indicated that FLX affects various physiological and metabolic processes in both species. FLX exposure induced oxidative stress, reproductive deficiency, abnormal pattern formation, DNA damage, and neurotransmission disturbance in H. magnipapillata, whereas it adversely affected O. javanicus by inducing oxidative stress, DNA damage, endoplasmic reticulum stress, and mRNA instability. Neurotransmission-based behavioral changes and endocrine disruption were strongly suspected in the FLX-exposed fish. These results suggest that FLX affects the behavior and metabolic regulation of aquatic organisms.
Collapse
Affiliation(s)
- Ade Yamindago
- CORECT Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia; Study Program of Marine Science, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia.
| | - Nayun Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Nayoung Lee
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Yejin Jo
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; KIOST School, University of Science and Technology, Geoje 53201, Republic of Korea.
| |
Collapse
|
3
|
Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka ( Oryzias latipes) exposed to benzalkonium chloride. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1387-1397. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jae-Woong Jung
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeong Jin Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Chang-Beom Park
- Ecotoxicology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong Cheol Shon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Sang Gon Kim
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| |
Collapse
|
4
|
Lee BY, Park JC, Kim MS, Choi BS, Kim DH, Lim JS, Yum S, Hwang UK, Nah GJ, Lee JS. The genome of the Java medaka (Oryzias javanicus): Potential for its use in marine molecular ecotoxicology. MARINE POLLUTION BULLETIN 2020; 154:111118. [PMID: 32319931 DOI: 10.1016/j.marpolbul.2020.111118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The Java medaka (Oryzias javanicus) is distributed in tropical brackish water and is considered as an ecotoxicological experimental organism for assessing diverse pollutions and global climate change effects in the ocean. In this study, we sequenced and assembled the genome of O. javanicus using the Oxford Nanopore technique and anchored the scaffolds to the 24 genetic linkage map of a sister species Oryzias melastigma. The assembled genome consisted of 773 scaffolds including 24 LG-based scaffolds, and the estimated genome length was 846.3 Mb (N50 = 19.3 Mb), containing 24,498 genes. As detoxification processes are crucial in aquatic organisms, antioxidant-related genes including glutathione S-transferases, superoxide dismutase, catalase, and glutathione peroxidase were identified in this study. In the genome of O. javanicus, a total of 21 GSTs, 4 SODs, 1 CAT, and 7 GPxs were identified and showed high similarities between sister species O. melastigma and Oryzias latipes. In addition, despite having 8 classes of cytosolic GSTs family, medaka showed no presence of GST pi and sigma classes, which are predominantly found in carp and salmon, but not in neoteleostei. This study adds another set to genome-library of Oryzias spp. and is a useful resource for better understanding of the molecular ecotoxicology.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jong-Sung Lim
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seungshic Yum
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Gyoung Ju Nah
- NICEM, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|