1
|
Yin H, Li Y, Feng Y, Tian L, Li Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients 2024; 16:4237. [PMID: 39683630 DOI: 10.3390/nu16234237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Eriodictyol is a flavanone compound commonly found in several edible plants. Ultrasound-assisted extraction and high-performance liquid chromatography (HPLC) are commonly used methods for the separation and analysis of eriodictyol. Many studies show that some micro-organisms can produce eriodictyol as a host. What is more, eriodictyol has a wide range of health benefits, including skincare, neuroprotective, hypoglycemic, anti-inflammatory, and antioxidant activities. In addition, the therapeutic properties of eriodictyol are cardioprotective, hepatoprotective, anticancer, with protective effects on the lungs and kidneys, and so on. This review examines the extraction, biosynthesis, and health and therapeutic properties of the natural compound eriodictyol and its value in medicine and food.
Collapse
Affiliation(s)
- Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
3
|
|
4
|
Lei Z, Ouyang L, Gong Y, Wang Z, Yu B. Effect of Eriodictyol on Collagen-Induced Arthritis in Rats by Akt/HIF-1α Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1633-1639. [PMID: 32425508 PMCID: PMC7196781 DOI: 10.2147/dddt.s239662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Purpose The aim of the experiment was to explore the effect of eriodictyol (ERI) on arthritis. Methods We established a rat model of collagen-induced rheumatoid arthritis (CIA) using type II collagen plus Freund’s complete adjuvant. We evaluated the degree of paw swelling, joint pathology, inflammatory cytokine levels, and the Akt/hypoxia-inducible factor (HIF)-1α signaling pathway in the CIA rats. Results ERI significantly ameliorated joint swelling; improved joint pathology; and suppressed the release of interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha. Moreover, ERI inhibited the Akt/HIF-1α pathway in the joints of rats and in lipopolysaccharide-treated RAW264.7 cells. Conclusion ERI ameliorated arthritis in a manner involving the Akt/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- ZhongHua Lei
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.,Department of Orthopedics, The Sixth Peoples Hospital of Huizhou, Huizhou 516211, People's Republic of China
| | - Liu Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yong Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - ZhaoZhen Wang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| |
Collapse
|
5
|
Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. LAB ON A CHIP 2020; 20:548-557. [PMID: 31942592 DOI: 10.1039/c9lc00958b] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death from cancer worldwide. The delivery and controlled regulation of miRNAs via exosomes is known as a potential therapeutic approach in the treatment of cancer. In this study, human cell-derived exosomes were used as delivery vehicles for miRNAs, and we investigated their anti-tumor and anti-angiogenic effects on NSCLCs that were cultured in 2D and 3D microfluidic devices. We demonstrated that exosomes that contained miRNA-497 (miR-497) effectively suppressed tumor growth and the expression of their associated genes, i.e., yes-associated protein 1 (YAP1), hepatoma-derived growth factor (HDGF), cyclin E1 (CCNE1), and vascular endothelial growth factor-A (VEGF-A), in A549 cells. Also, the level of VEGF-A-mediated angiogenic sprouting was decreased drastically in human umbilical vein endothelial cells (HUVECs) cultured in a microfluidic device. To mimic the in vivo-like tumor microenvironment of NSCLC, A549 cells were co-cultured with HUVECs in a single device, and miR-497-loaded exosomes were delivered to both types of cells. As a result, both the tube formation of endothelial cells and the migration of tumor decreased dramatically compared to the control. This indicated that miR-497 has synergistic inhibitory effects that target tumor growth and angiogenesis, so exosome-mediated miRNA therapeutics combined with the microfluidic technology could be a predictive, cost-efficient translational tool for the development of targeted cancer therapy.
Collapse
Affiliation(s)
- Kyeongsoo Jeong
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Yeong Jun Yu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Chungbuk 28119, Republic of Korea.
| | - Jae Young You
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea. and Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Chungbuk 28119, Republic of Korea. and Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Pham QN, Trinh KTL, Tran NKS, Park TS, Lee NY. Fabrication of 3D continuous-flow reverse-transcription polymerase chain reaction microdevice integrated with on-chip fluorescence detection for semi-quantitative assessment of gene expression. Analyst 2018; 143:5692-5701. [PMID: 30318528 DOI: 10.1039/c8an01739e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We fabricate a three-dimensional (3D) microdevice operated with minimal peripheral accessories, including a portable pump for semi-automated sample delivery and a single heater for temperature control, for performing reverse transcription polymerase chain reaction (RT-PCR) integrated with a downstream fluorescence detection module for semi-quantitative assessment of gene expression. The microdevice was fabricated by wrapping a polytetrafluoroethylene (PTFE) tube around a pre-designed polycarbonate mold to create a seamless microchannel for both the reverse transcription (RT) of RNA and the amplification of complementary DNA. In addition, a silicone tube, which underwent a two-step surface modification mediated by polyethyleneimine and glutaraldehyde coating, was connected at the outlet to capture amplicons downstream of the PTFE tube for on-site fluorescence detection. This fabrication method enabled continuous-flow RT-PCR (CF RT-PCR) using the 3D CF RT-PCR microdevice as a reactor, a single heater for the temperature control of both RT and PCR processes, and a disposable plastic syringe for semi-automated sample delivery. The microdevice was successfully implemented for the identification of the β-actin gene, a constitutively expressed gene in all cells, and the sphingosine-1-phosphate lyase 1 gene, a potential pharmacological target gene in the diagnosis of cancer, diabetes, and atherosclerosis. This portable integrated microdevice offers a potential approach towards preliminary studies of gene expression and identification of RNA viruses.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | | | | | | | | |
Collapse
|
7
|
Zhang Z, Liang Z, Yin L, Li QX, Wu Z. Distribution of Four Bioactive Flavonoids in Maize Tissues of Five Varieties and Correlation with Expression of the Biosynthetic Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10431-10437. [PMID: 30240197 DOI: 10.1021/acs.jafc.8b03865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flavonoids are characteristic in maize and have diverse biological functions. C-Glycosylflavones are neuroprotective against β-amyloid-induced tau hyperphosphorylation and neurotoxicity in SH-SY5Y cells, which is relevant to Alzheimer's disease prevention and treatment. The content of the flavonoids eriodictyol, luteolin, isoorientin, and maysin varied in pollens, silks, tassels, and seeds among five maize varieties. Eriodictyol content was high (51-322 ng/g dw) in pollens, while luteolin content was low (0.2-106 ng/g dw) in all four tissues. The isoorientin content was approximately 3- to 10-fold greater than eriodictyol in pollens and tassels, particularly in the hybrid M1 and sweet corn M5 varieties. Maysin content was high in most silks and tassels. The differential expression of five genes involved in the maysin biosynthesis correlated well with the profiles of the four flavonoids among tissues and varieties. The present study offers valuable data for maize breeding and the use of maize flavonoids as functional food components.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center , Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Zhibin Liang
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Longfei Yin
- Beijing Agro-Biotechnology Research Center , Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Zhongyi Wu
- Beijing Agro-Biotechnology Research Center , Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China
| |
Collapse
|
8
|
Lee H, Gao X, Kim YP. Immuno-Nanoparticles for Multiplex Protein Imaging in Cells and Tissues. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-018-2201-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|