1
|
Park JH, Song Z, Yun TG, Kim HS, Shin MH, Kang MJ, Park MS, Pyun JC. Electrochemical analysis of total phospholipids in human serum for severe sepsis diagnosis. Talanta 2024; 268:125374. [PMID: 37925823 DOI: 10.1016/j.talanta.2023.125374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical analysis of total phospholipids was performed for the diagnosis of sepsis. The influence of electrode materials on the analysis of the chromogenic substrate was analyzed using Au, graphite, and pyrolyzed carbon electrodes. The total phospholipid analysis based on electrochemical analysis with pyrolyzed carbon was used for diagnosis of sepsis using sera from healthy volunteers, systemic inflammatory response syndrome (SIRS), and severe sepsis patients. The analysis results using the optical measurement and the electrochemical analysis were compared for the serum samples from sepsis patients and healthy controls. Additionally, the interference of human serum on the optical measurement and electrochemical analysis was estimated by signal-to-noise (S/N) calculation. The assay results of the levels of other biomarkers for sepsis (C-reactive protein and procalcitonin) and the total phospholipid levels obtained using the optical measurement and electrochemical analysis methods were statistically similar. Finally, the mortality of patients, indicated by the results of the total phospholipid assay performed using the electrochemical analysis of the patient samples collected daily (1, 3, and 7 day(s) after admission to hospital), was compared with the patient mortality assessed via conventional severity indexes, such as the SOFA and APACHE Ⅱ scores. The 28-day survival rate was estimated by Kaplan-Meier survival analysis based on the total phospholipid level of patient samples that were obtained after 1, 3, and 7 day(s) from hospital admission.
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hye Soo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
2
|
Zaidi SFA, Saeed A, Ho VC, Heo JH, Cho HH, Sarwar N, Lee NE, Mun J, Lee JH. Chitosan-reinforced gelatin composite hydrogel as a tough, anti-freezing, and flame-retardant gel polymer electrolyte for flexible supercapacitors. Int J Biol Macromol 2023; 234:123725. [PMID: 36822151 DOI: 10.1016/j.ijbiomac.2023.123725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes. This study reports a novel approach for developing a chitosan-reinforced anti-freezing ionic conductive gelatin hydrogel to meet these demands. Immersion of chitosan-containing gelatin hydrogels in salt solutions caused chitosan precipitation, resulting in composite hydrogels. The precipitated chitosan contributes to the reinforcement of the gelatin hydrogel network, resulting in a high mechanical toughness of up to 3.81 MJ/m3, a fracture energy of 26 kJ/m2, anti-freezing properties (below -30 °C), and excellent flame retardancy without softening. Furthermore, the hydrogel exhibits excellent electrochemical performance, with an ionic conductivity ranging from 72 mS/cm at room temperature (26 °C) to 39 mS/cm at -30 °C. The proposed hydrogel exhibits potential for use in SSC as a gel polymer electrolyte. This study demonstrates a novel strategy for controlling the mechanical, thermal, and electrochemical characteristics of flexible supercapacitors using biological macromolecules.
Collapse
Affiliation(s)
- Syed Farrukh Alam Zaidi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Metallurgical and Materials Engineering, University of Engineering and Technology (UET), Lahore 39161, Pakistan
| | - Aiman Saeed
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van-Chuong Ho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Nasir Sarwar
- Department of Textile Engineering, University of Engineering and Technology (UET), Faisalabad Campus, Lahore 38000, Pakistan
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Junyoung Mun
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Core Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Subhan MA, Torchilin VP. Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010153. [PMID: 36678782 PMCID: PMC9861964 DOI: 10.3390/pharmaceutics15010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanobiopolymers such as chitosan, gelatin, hyaluronic acid, polyglutamic acid, lipids, peptides, exosomes, etc., delivery systems have prospects to help overwhelmed physiological difficulties allied with the delivery of siRNA drugs to solid tumors, including breast cancer cells. Nanobiopolymers have favorable stimuli-responsive properties and therefore can be utilized to improve siRNA delivery platforms to undruggable MDR metastatic cancer cells. These biopolymeric siRNA drugs can shield drugs from pH degradation, extracellular trafficking, and nontargeted binding sites and are consequently suitable for drug internalization in a controlled-release fashion. In this review, the utilization of numerous biopolymeric compounds such as siRNA drug delivery systems for MDR solid tumors, including breast cancers, will be discussed.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
4
|
Zaidi SFA, Kim YA, Saeed A, Sarwar N, Lee NE, Yoon DH, Lim B, Lee JH. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Int J Biol Macromol 2022; 209:1665-1675. [PMID: 35487373 DOI: 10.1016/j.ijbiomac.2022.04.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks. We propose a novel strategy to fabricate an ionic conductive organohydrogel from natural biological macromolecule "gelatin" and polyacid "tannic acid" to resolve these challenges. Tannic acid modified the structure of the gelatin network in the ionic conductive organohydrogels, that not only led to an increase in toughness accompanying a decrease in elastic moduli but also headed to higher strain sensitivity and tunability. The proposed methodology exhibited tunable tensile modulus from 27 to 13 kPa, tensile strength from 287 to 325 kPa, elongation at fracture from 510 to 620%, toughness from 500 to 550 kJ/m3, conductivity from 0.29 to 0.8 S/m, and strain sensitivity (GF = 1.4-6.5). Moreover, the proposed organohydrogel exhibited excellent freezing tolerance. This study provides a facile yet powerful strategy to tune the mechanical and electrical properties of organohydrogels which can be adapted to various wearable sensors.
Collapse
Affiliation(s)
- Syed Farrukh Alam Zaidi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Yun Ah Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Aiman Saeed
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Nasir Sarwar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Textile Engineering, University of Engineering and Technology, Lahore (Faisalabad Campus) 38000, Pakistan
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Byun MJ, Lim J, Kim SN, Park DH, Kim TH, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BIOCHIP JOURNAL 2022; 16:128-145. [PMID: 35261724 PMCID: PMC8891745 DOI: 10.1007/s13206-022-00052-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
Abstract
RNA therapeutics, including messenger RNA (mRNA) and small interfering RNA (siRNA), are genetic materials that mediate the translation of genetic direction from genes to induce or inhibit specific protein production. Although the interest in RNA therapeutics is rising globally, the absence of an effective delivery system is an obstacle to the clinical application of RNA therapeutics. Additionally, immunogenicity, short duration of protein expression, unwanted enzymatic degradation, and insufficient cellular uptake could limit the therapeutic efficacy of RNA therapeutics. In this regard, novel platforms based on nanoparticles are crucial for delivering RNAs to the targeted site to increase efficiency without toxicity. In this review, the most recent status of nanoparticles as RNA delivery vectors, with a focus on polymeric nanoparticles, peptide-derived nanoparticles, inorganic nanoparticles, and hybrid nanoparticles, is discussed. These nanoparticular platforms can be utilized for safe and effective RNA delivery to augment therapeutic effects. Ultimately, RNA therapeutics encapsulated in nanoparticle-based carriers will be used to treat many diseases and save lives.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
6
|
Song Z, Park JH, Kim HR, Lee GY, Kang MJ, Kim MH, Pyun JC. Carbon electrode obtained via pyrolysis of plasma-deposited parylene-C for electrochemical immunoassays. Analyst 2022; 147:3783-3794. [DOI: 10.1039/d2an00854h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, parylene-C films from plasma deposition as well as thermal deposition were pyrolyzed to prepare a carbon electrode for application in electrochemical immunoassays.
Collapse
Affiliation(s)
- Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
- Electronic Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | | | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|