1
|
Zhao Y, Guan D, Liu X, Gao GF, Meng F, Liu B, Xing P, Jiang X, Ma M, Cao F, Li L, Li J. Profound Change in Soil Microbial Assembly Process and Co-occurrence Pattern in Co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on Soybean. Front Microbiol 2022; 13:846359. [PMID: 35369449 PMCID: PMC8972127 DOI: 10.3389/fmicb.2022.846359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Rhizosphere microbial communities are vital for plant growth and soil sustainability; however, the composition of rhizobacterial communities, especially the assembly process and co-occurrence pattern among microbiota after the inoculation of some beneficial bacteria, remains considerably unclear. In this study, we investigated the structure of rhizomicrobial communities, their assembly process, and interactions contrasting when Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 are co-inoculated or Bradyrhizobium japonicum 5038 mono-inoculated in black and cinnamon soils of soybean fields. The obtained results indicated that the Chao and Shannon indices were all higher in cinnamon soil than that in black soil. In black soil, the co-inoculation increased the Shannon indices of bacteria comparing with that of the mono-inoculation. In cinnamon soil, the co-inoculation decreased the Chao indices of fungi comparing with that of mono-inoculation. Compared with the mono-inoculation, the interactions of microorganisms of co-inoculation in the co-occurrence pattern increased in complexity, and the nodes and edges of co-inoculation increased by 10.94, 40.18 and 4.82, 16.91% for bacteria and fungi, respectively. The co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 increased the contribution of stochastic processes comparing with Bradyrhizobium japonicum 5038 inoculation in the assembly process of soil microorganisms, and owing to the limitation of species diffusion might restrict the direction of pathogenic microorganism movement. These findings support the feasibility of rebuilding the rhizosphere microbial system via specific microbial strain inoculation and provide evidence that the co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 can be adopted as an excellent compound rhizobia agent resource for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Bingqiang Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Hebei, China
| | - Pengfei Xing
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
|
3
|
Impact of continuous Salvia miltiorrhiza cropping on rhizosphere actinomycetes and fungi communities. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
4
|
Bogino P, Abod A, Nievas F, Giordano W. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS One 2013; 8:e79614. [PMID: 24223979 PMCID: PMC3817132 DOI: 10.1371/journal.pone.0079614] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria) is protection against water deprivation (desiccation or osmotic effect). The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa) exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA) for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.
Collapse
Affiliation(s)
- Pablo Bogino
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelén Abod
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Fiorela Nievas
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
5
|
Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E. Rhizobium
calliandrae sp. nov.,
Rhizobium
mayense sp. nov. and
Rhizobium
jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 2013; 63:3423-3429. [DOI: 10.1099/ijs.0.048249-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calliandra grandiflora has been used as a medicinal plant for thousands of years in Mexico. Rhizobial strains were obtained from root nodules of C. grandiflora collected from different geographical regions in Chiapas and characterized by BOX-PCR, amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. Most isolates corresponded to members of the genus
Rhizobium
and those not related to species with validly published names were further characterized by recA, atpD, rpoB and nifH gene phylogenies, phenotypic and DNA–DNA hybridization analyses. Three novel related species of the genus
Rhizobium
within the ‘
Rhizobium tropici
group’ share the same symbiovar that may be named sv. calliandrae. The names proposed for the three novel species are
Rhizobium
calliandrae sp. nov. (type strain, CCGE524T = ATCC BAA-2435T = CIP 110456T = LBP2-1T),
Rhizobium
mayense sp. nov. (type strain, CCGE526T = ATCC BAA-2446T = CIP 110454T = NSJP1-1T) and
Rhizobium
jaguaris sp. nov. (type strain, CCGE525T = ATCC BAA-2445T = CIP 110453T = SJP1-2T).
Collapse
Affiliation(s)
| | | | - Marco A. Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Julio Martinez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
6
|
Prasanna Kumar SP, Hariprasad P, Brijesh Singh S, Gowtham HG, Niranjana SR. Structural and functional diversity of rhizobacteria associated with Rauwolfia spp. across the Western Ghat regions of Karnataka, India. World J Microbiol Biotechnol 2013; 30:163-73. [PMID: 23864441 DOI: 10.1007/s11274-013-1435-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
Abstract
The present study carried out with denaturing gradient gel electrophoresis of DNA extracted from rhizosphere soils of Rauwolfia spp. collected from Western Ghat (WG) regions of Karnataka indicated that Pseudomonas sp. was prevalently found followed by Methylobacterium sp., Bacillus sp. and uncultured bacteria. A total of 200 rhizobacteria were isolated from 58 rhizosphere soil samples comprising of 15 different bacterial genera. The Shannon Weaver diversity index (H') and Simpson's diversity index (D) were found to be 2.57 and 0.91 for cultivable bacteria, respectively. The total species richness of cultivable rhizobacteria was high in Coorg district comprising 15 bacterial genera while in Mysore district, four bacterial genera were recorded. Rarefaction curve analysis also indicated the presence of higher species richness in samples of Shimoga and Coorg. All the rhizobacteria were screened for their multiple plant growth promotion and disease suppression traits. The results revealed that 70% of the isolates colonized tomato roots, 42% produced indole acetic acid, 55% solubilized phosphorus, while 43, 22, 27, 19, 40, 15 and 44% produced siderophore, salicylic acid, hydrogen cyanide, chitinase, phytase, cellulase and protease, respectively. Rhizobacterial isolates showing antagonistic activity against Fusarium oxysporum and Aspergillus flavus were 53 and 33%, respectively. Plant growth promotion studies revealed that most of the isolates increased percent germination with significantly higher vigour index as compared to untreated control. Most predominant rhizobacteria found in the rhizospheres of Rauwolfia spp. of WG regions are potential PGPR which can serve as biofertilizers and biopesticides.
Collapse
Affiliation(s)
- S P Prasanna Kumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India,
| | | | | | | | | |
Collapse
|
7
|
Pongsilp N, Nimnoi P, Lumyong S. Genotypic diversity among rhizospheric bacteria of three legumes assessed by cultivation-dependent and cultivation-independent techniques. World J Microbiol Biotechnol 2011; 28:615-26. [PMID: 22806857 DOI: 10.1007/s11274-011-0855-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
The genotypic diversity of rhizospheric bacteria of 3 legumes including Vigna radiata, Arachis hypogaea and Acacia mangium was compared by using cultivation-dependent and cultivation-independent methods. For cultivation-dependent method, Random amplified polymorphic DNA (RAPD) profiles revealed that the bacterial genetic diversity of V. radiata and A. mangium rhizospheres was higher than that of A. hypogaea rhizosphere. For cultivation-independent method, Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes revealed the difference in bacterial community and diversity of rhizospheres collected from 3 legumes. The ribotype richness which indicates species diversity, was highest in V. radiata rhizosphere, followed by A. hypogaea and A. mangium rhizospheres, respectively. Three kinds of media were used to cultivate different target groups of bacteria. The result indicates that the communities of cultivable bacteria in 3 rhizospheres recovered from nutrient agar (NA) medium were mostly different from each other, while Bradyrhizobium selective medium (BJSM) and nitrogen-free medium shaped the communities of cultivable bacteria. Nine isolates grown on BJSM were identified by 16S rRNA gene sequence analysis. These isolates were very closely related (with 96% to 99% identities) to either one of the three groups including Cupriavidus-Ralstonia group, Bacillus group and Bradyrhizobium-Bosea-Afipia group. The rhizospheres were also examined for their enzymatic patterns. Of 19 enzymes tested, 3 rhizospheres were distinguishable by the presence or the absence of leucine acrylamidase and acid phosphatase. The selected cultivable bacteria recovered from NA varied in their abilities to produce indole-acetic acid and ammnonia. The resistance to 10 antibiotics was indistinguishable among bacteria isolated from different rhizospheres.
Collapse
Affiliation(s)
- Neelawan Pongsilp
- Department of Microbiology Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | | | |
Collapse
|