1
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
2
|
Salt tolerance of halotolerant bacteria from coastal soils and sediments near saltern field of Hainan Island, China. Arch Microbiol 2021; 203:5921-5930. [PMID: 34586467 DOI: 10.1007/s00203-021-02461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Understanding the salt tolerance of microbial communities may help to elucidate the effects of salt concentration and other environmental factors on soil biodiversity. Here, high-throughput sequencing of 16S rDNA and ITS was combined to investigate the distribution and salt tolerance of microbial communities in coastal soils and sediments near the Yinggehai saltern field of Hainan Island, China. The microbial communities in the soils and sediments of the land zone (YGHLS), the intertidal zone (YGHIS), and the inshore zone (YGHWS) were compared. PCoA of weighted and unweighted UniFrac distance revealed obvious differences in soil microbial community among different samples. ANOSIM analysis could clearly separate the three samples from each other. Three halotolerant bacteria, including Halomonas, Halobacillus and Wallemia, were found in the samples, which accounted for 0.0335 ± 0.0586%, 0.0241 ± 0.0304%, and 0.0308 ± 0.0445% of the total microbial community, respectively. The relative abundance of Trk system potassium uptake protein, Kdp operon response regulator, and Na+/H+ antiporter in the samples exceeded 0.09%, 0.06%, and 0.02%, respectively, indicating that the Trk system plays a major role in the salt tolerance of halotolerant bacteria in Yinggehai coastal soils and sediments.
Collapse
|
3
|
Halophilic Prokaryotes in Urmia Salt Lake, a Hypersaline Environment in Iran. Curr Microbiol 2021; 78:3230-3238. [PMID: 34216240 DOI: 10.1007/s00284-021-02583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 10/20/2022]
Abstract
In this study, fluorescence in situ hybridization (FISH) and PCR-amplified fragments of the 16SrDNA gene were used to determine prokaryotes diversity in Urmia Salt Lake. Prokaryote cell population in Urmia lake range from 3.1 ± 0.3 × 106, 2 ± 0.2 × 108, 4 ± 0.3 × 108, and 1.8 ± 0.2 × 108 cells ml-1 for water, soil, sediment, and salt samples by DAPI (4́, 6-diamidino-2-phenylindole) direct count, respectively. The proportion of bacteria and archaea in the samples determinable by FISH ranged between 36.1 and 55% and 48.5 and 55.5%, respectively. According to the DGGE method, some bands were selected and separated from the gel, then amplified and sequenced. The results of sequences were related to two phyla Proteobacteria (16.6%) and Bacteroidetes (83.3%), which belonged to four genera Salinibacter, Mangroviflexus, Pseudomonas, and Cesiribacter, and the archaeal sequences were related to Euryarchaeota phyla and three genera Halonotius, Haloquadratum, and Halorubrum. According to our results, it seems that prokaryotic populations in this hypersaline environment are more diverse than expected, and bacteria are so abundant and diverse and form the metabolically active part of the microbial population inhabiting this extreme environment. Molecular dependent and independent approaches revealed a different aspect of this environment microbiota.
Collapse
|
4
|
Zaher HA, Nofal MI, Hendam BM, Elshaer MM, Alothaim AS, Eraqi MM. Prevalence and Antibiogram of Vibrio parahaemolyticus and Aeromonas hydrophila in the Flesh of Nile Tilapia, with Special Reference to Their Virulence Genes Detected Using Multiplex PCR Technique. Antibiotics (Basel) 2021; 10:654. [PMID: 34070815 PMCID: PMC8229650 DOI: 10.3390/antibiotics10060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023] Open
Abstract
Vibrio parahaemolyticus and Aeromonas hydrophila are major public health problems and the main cause of bacterial disease in Nile tilapia (Oreochromis niloticus). This study was conducted to determine the prevalence, antibiotic resistance and some virulence genes of both V. parahaemolyticus and A. hydrophila isolates from Nile tilapia. From Manzala Farm at Dakahlia governorate, 250 freshwater fish samples were collected. The confirmed bacterial isolates from the examined Nile tilapia samples in the study were 24.8% (62/250) for V. parahaemolyticus and 19.2% (48/250) for A. hydrophila. multiplex PCR, revealing that the tlh gene was found in 46.7% (29/62) of V. parahaemolyticus isolates, while the tdh and trh virulence genes were found in 17.2% (5/29). Meanwhile, 39.5% (19/48) of A. hydrophila isolates had the 16s rRNA gene and 10.5% (2/19) had the aerA and ahh1 virulence genes. The Multiple Antibiotic Resistance indices of V. parahaemolyticus and A. hydrophila were 0.587 and 0.586, respectively. In conclusion, alternative non-antibiotic control strategies for bacterial infections in farmed fish should be promoted to avoid multidrug-resistant bacteria. Therefore, it is suggested that farmers should be skilled in basic fish health control and that molecular detection methods are more rapid and cost-effective than bacteriological methods.
Collapse
Affiliation(s)
- Hanan A. Zaher
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamad I. Nofal
- General Authority of Fish Resources and Development (GAFRD), Manzala Fish Farm, Manzala 35642, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Moustafa M. Elshaer
- Department of Microbiology at Specialized Medical Hospital, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulaziz S. Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mostafa M. Eraqi
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Crisler JD, Chen F, Clark BC, Schneegurt MA. Cultivation and characterization of the bacterial assemblage of epsomic Basque Lake, BC. Antonie Van Leeuwenhoek 2019; 112:1105-1119. [PMID: 30737709 PMCID: PMC6548648 DOI: 10.1007/s10482-019-01244-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/29/2019] [Indexed: 01/21/2023]
Abstract
Athalassohaline waters that are rich in divalent ions are good analogues for the chemical environments of Mars and the ocean worlds. Sulfate salts, along with chlorides, are important in Mars regolith with Ca, Fe, Mg, and Na counterions. Certain lakes in the Pacific Northwest are saturated with MgSO4 as epsomite. Here we report on the microbial community of Basque Lake, BC, a group of playas that is saturated with MgSO4. More than 60 bacterial isolates were obtained from Basque Lake soils by enrichment culture and repetitive streak-plating using media containing 10% (~ 1.7 M) NaCl or 50% (~ 2 M) MgSO4. Most of the isolates (~ 75%) were Gram-positive, motile, and produced endospores. Isolates related to Marinococcus halophilus and Virgibacillus marismortui dominated the collection. Halomonas and Salinivibrio were Gram-negative genera found at Basque Lake. Nearly all of the Basque Lake isolates grew at 50% MgSO4, with 65% growing at 60% MgSO4. Several isolates could grow in saturated (67%) MgSO4 (aw = 0.90). All of the isolates grew at 10% NaCl with 70% growing at 20% salinity (~ 3.5 M NaCl; aw = 0.82). Basque Lake isolates grew better at basic pH than acidic pH, with 80% growing at pH 9 and 30% growing at pH 10. Only 20% of the isolates grew at pH 5. Numerical taxonomy dendrograms based on 44 phenetic characteristics showed a strong correspondence to phylogenetic trees constructed from 16S rRNA gene sequences. Pyrosequencing of 16S rRNA gene sequences from direct DNA extracts of Basque Lake soils recovered predominantly Proteobacteria (60%), Firmicutes (11%), and unclassified bacteria (27%). Microbes capable of growth under the extreme chemical conditions of Mars are a particular concern for forward planetary protection should they contaminate a spacecraft.
Collapse
Affiliation(s)
- James D Crisler
- Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Fei Chen
- Planetary Protection Group, Jet Propulsion Laboratory, NASA, Pasadena, CA, USA
| | | | - Mark A Schneegurt
- Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
6
|
Pakchoi Antioxidant Improvement and Differential Rhizobacterial Community Composition under Organic Fertilization. SUSTAINABILITY 2019. [DOI: 10.3390/su11082424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A high level of antioxidants in organic-produced vegetables has been attributed to soil conditions; however, little is known about the relationships between antioxidants and rhizobacteria under different fertilization treatments. A pot trial for pakchoi (Brassica campestris ssp. chinensis L.) was conducted under greenhouse conditions with: (1) control; (2) chemical fertilizer; and (3) organic fertilizer. The responses of the plant, soil properties, and rhizobacterial community were measured after 45 days of cultivation. Fertilization increased soil nutrient levels and pakchoi productivity and the reshaped rhizobacterial community structure, while no differences in rhizobacterial abundance and total diversity were observed. Generally, most plant antioxidants were negatively correlated with inorganic nitrogen (N) and positively correlated to organic N in soil. The genera of Arthrospira and Acutodesmus contained differential rhizobacteria under chemical fertilizer treatment, which are known as copiotrophs. In addition, the addition of a chemical fertilizer may stimulate organic substance turnover by the enrichment of organic compound degraders (e.g., Microbacterium and Chitinophaga) and the promotion of predicted functional pathways involved in energy metabolism. Several beneficial rhizobacteria were associated with organic fertilizer amended rhizosphere including the genera Bacillus, Mycobacterium, Actinomycetospora, and Frankia. Furthermore, Bacillus spp. were positively correlated with plant biomass and phenolic acid. Moreover, predictive functional profiles of the rhizobacterial community involved in amino acid metabolism and lipid metabolism were significantly increased under organic fertilization, which were positively correlated with plant antioxidant activity. Overall, our study suggests that the short-term application of chemical and organic fertilizers reshapes the rhizobacterial community structure, and such changes might contribute to the plant’s performance.
Collapse
|
7
|
Li Y, Kong Y, Teng D, Zhang X, He X, Zhang Y, Lv G. Rhizobacterial communities of five co-occurring desert halophytes. PeerJ 2018; 6:e5508. [PMID: 30186688 PMCID: PMC6119601 DOI: 10.7717/peerj.5508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recently, researches have begun to investigate the microbial communities associated with halophytes. Both rhizobacterial community composition and the environmental drivers of community assembly have been addressed. However, few studies have explored the structure of rhizobacterial communities associated with halophytic plants that are co-occurring in arid, salinized areas. METHODS Five halophytes were selected for study: these co-occurred in saline soils in the Ebinur Lake Nature Reserve, located at the western margin of the Gurbantunggut Desert of Northwestern China. Halophyte-associated bacterial communities were sampled, and the bacterial 16S rDNA V3-V4 region amplified and sequenced using the Illumina Miseq platform. The bacterial community diversity and structure were compared between the rhizosphere and bulk soils, as well as among the rhizosphere samples. The effects of plant species identity and soil properties on the bacterial communities were also analyzed. RESULTS Significant differences were observed between the rhizosphere and bulk soil bacterial communities. Diversity was higher in the rhizosphere than in the bulk soils. Abundant taxonomic groups (from phylum to genus) in the rhizosphere were much more diverse than in bulk soils. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes were the most abundant phyla in the rhizosphere, while Proteobacteria and Firmicutes were common in bulk soils. Overall, the bacterial community composition were not significantly differentiated between the bulk soils of the five plants, but community diversity and structure differed significantly in the rhizosphere. The diversity of Halostachys caspica, Halocnemum strobilaceum and Kalidium foliatum associated bacterial communities was lower than that of Limonium gmelinii and Lycium ruthenicum communities. Furthermore, the composition of the bacterial communities of Halostachys caspica and Halocnemum strobilaceum was very different from those of Limonium gmelinii and Lycium ruthenicum. The diversity and community structure were influenced by soil EC, pH and nutrient content (TOC, SOM, TON and AP); of these, the effects of EC on bacterial community composition were less important than those of soil nutrients. DISCUSSION Halophytic plant species played an important role in shaping associated rhizosphere bacterial communities. When salinity levels were constant, soil nutrients emerged as key factors structuring bacterial communities, while EC played only a minor role. Pairwise differences among the rhizobacterial communities associated with different plant species were not significant, despite some evidence of differentiation. Further studies involving more halophyte species, and individuals per species, are necessary to elucidate plant species identity effects on the rhizosphere for co-occurring halophytes.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Ecology Post-doctoral Research Station, Xinjiang University, Urumqi, Xinjiang, China
| | - Yan Kong
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- SJTU-Yale Joint Center for Biostistics, Shanghai Jiaotong University, Shanghai, China
| | - Dexiong Teng
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xueni Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Yang Zhang
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|
9
|
Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, Reddy M, Cherif A, Tsiamis G, Borin S, Daffonchio D. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth. Front Microbiol 2016; 7:1286. [PMID: 27597846 PMCID: PMC4992691 DOI: 10.3389/fmicb.2016.01286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022] Open
Abstract
Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Paola Bariselli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Muppala Reddy
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
- Greenhouse Laboratory, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet, BVBGR-LR11ES31, Manouba University, ArianaTunisia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Panepistimioupoli PatronGreece
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, ThuwalSaudi Arabia
- Department of Food, Environmental and Nutritional Sciences, University of Milan, MilanItaly
| |
Collapse
|
10
|
Borruso L, Bacci G, Mengoni A, De Philippis R, Brusetti L. Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiol Lett 2014; 359:193-200. [PMID: 25131902 DOI: 10.1111/1574-6968.12565] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022] Open
Abstract
Rhizobacterial communities associated with Phragmites australis (Cav.) Trin. ex Steud. in a hypersaline pond close to Wuliangsuhai Lake (Inner Mongolia - China) were investigated and compared with the microbial communities in bulk sediments of the same pond. Microbiological analyses have been done by automated ribosomal intergenic spacer analysis (ARISA) and partial 16S rRNA gene 454 pyrosequencing. Although community richness was higher in the rhizosphere samples than in bulk sediments, the salinity seemed to be the major factor shaping the structure of the microbial communities. Halanaerobiales was the most abundant taxon found in all the different samples and Desulfosalsimonas was observed to be present more in the rhizosphere rather than in bulk sediment.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bozen/Bolzano, Italy
| | | | | | | | | |
Collapse
|
11
|
Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BIOMED RESEARCH INTERNATIONAL 2013; 2013:248078. [PMID: 23781499 PMCID: PMC3679824 DOI: 10.1155/2013/248078] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/05/2022]
Abstract
Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.
Collapse
|
12
|
Sagar S, Esau L, Hikmawan T, Antunes A, Holtermann K, Stingl U, Bajic VB, Kaur M. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:29. [PMID: 23388148 PMCID: PMC3598566 DOI: 10.1186/1472-6882-13-29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/01/2013] [Indexed: 11/10/2022]
Abstract
Background High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules. Methods Total 20 i.e. lipophilic (chloroform) and hydrophilic (70% ethanol) extracts of marine bacteria isolated from brine-seawater interface of the Red Sea were tested for cytotoxic and apoptotic activity against three human cancer cell lines, i.e. HeLa (cervical carcinoma), MCF-7 (Breast Adenocarcinoma) and DU145 (Prostate carcinoma). Results Among these, twelve extracts were found to be very active after 24 hours of treatment, which were further evaluated for their cytotoxic and apoptotic effects at 48 hr. The extracts from the isolates P1-37B and P3-37A (Halomonas) and P1-17B (Sulfitobacter) have been found to be the most potent against tested cancer cell lines. Conclusion Overall, bacterial isolates from the Red Sea displayed promising results and can be explored further to find novel drug-like molecules. The cell line specific activity of the extracts may be attributed to the presence of different polarity compounds or the cancer type i.e. biological differences in cell lines and different mechanisms of action of programmed cell death prevalent in different cancer cell lines.
Collapse
|
13
|
Borsodi AK, Felföldi T, Máthé I, Bognár V, Knáb M, Krett G, Jurecska L, Tóth EM, Márialigeti K. Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 2012; 17:87-98. [PMID: 23132551 DOI: 10.1007/s00792-012-0496-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/25/2012] [Indexed: 11/28/2022]
Abstract
Lake Red is one of the saline lakes which were formed as a consequence of salt massif dissolution at the foot of the Gurghiu Mountains (Central Romania) at the end of the nineteenth century. The lake water had approximately 15 % w/v salt content. Phylogenetic diversity of prokaryotes inhabiting the water and sediment of the lake was studied using cultivation and cultivation-independent methods following a sampling in spring 2009. According to the results of 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), the richness of Bacteria was higher than Archaea on the basis of the number and position of dominant bands in the gel. Sequences from DGGE bands were affiliated with Gammaproteobacteria (Halomonas and Alkalilimnicola) and Bacteroidetes (Psychroflexus) as well as Euryarchaeota. Cultivation from five different saline media resulted in 101 bacterial strains of which Gammaproteobacteria (Halomonas, Marinobacter and Salinivibrio) were the most abundant. Firmicutes (Bacillus) and Alphaproteobacteria (Aurantimonas and Roseovarius) were also identified among the isolated strains. The 16S rRNA genes from 82 bacterial and 95 archaeal clones were also phylogenetically analyzed. Bacterial clones were related to various genera of Gammaproteobacteria (Alkalilimnicola, Alkalispirillum, Arhodomonas, Halomonas, Saccharospirillum), Bacteroidetes (Gracilimonas, Psychroflexus) and Alphaproteobacteria (Oceanicola, Roseinatronobacter, Roseovarius). All of the archaeal clones sequenced corresponded to a homologous cluster affiliated with Halopelagius.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|