1
|
Bagewadi ZK, Yunus Khan T, Gangadharappa B, Kamalapurkar A, Mohamed Shamsudeen S, Yaraguppi DA. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach. Saudi J Biol Sci 2023; 30:103753. [PMID: 37583871 PMCID: PMC10424208 DOI: 10.1016/j.sjbs.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Bhavya Gangadharappa
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karnataka 560054, India
| | - Ankita Kamalapurkar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
2
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
3
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
4
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
5
|
Metryka O, Wasilkowski D, Mrozik A. Evaluation of the Effects of Ag, Cu, ZnO and TiO 2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2022; 23:4966. [PMID: 35563357 PMCID: PMC9103769 DOI: 10.3390/ijms23094966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
6
|
Frye KA, Sendra KM, Waldron KJ, Kehl-Fie TE. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. J Inorg Biochem 2022; 230:111748. [PMID: 35151099 PMCID: PMC9112591 DOI: 10.1016/j.jinorgbio.2022.111748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
Superoxide dismutases (SODs) are ancient enzymes of widespread importance present in all domains of life. Many insights have been gained into these important enzymes over the 50 years since their initial description, but recent studies in the context of microbial pathogenesis have resulted in findings that challenge long established dogmas. The repertoire of SODs that bacterial pathogens encode is diverse both in number and in metal dependencies, including copper, copper and zinc, manganese, iron, and cambialistic enzymes. Other bacteria also possess nickel dependent SODs. Compartmentalization of SODs only partially explains their diversity. The need for pathogens to maintain SOD activity across distinct hostile environments encountered during infection, including those limited for essential metals, is also a driver of repertoire diversity. SOD research using pathogenic microbes has also revealed the apparent biochemical ease with which metal specificity can change within the most common family of SODs. Collectively, these studies are revealing the dynamic nature of SOD evolution, both that of individual SOD enzymes that can change their metal specificity to adapt to fluctuating cellular metal availability, and of a cell's repertoire of SOD isozymes that can be differentially expressed to adapt to fluctuating environmental metal availability in a niche.
Collapse
|
7
|
Chamekh A, Kharbech O, Driss-Limam R, Fersi C, Khouatmeya M, Chouari R. Evidences for antioxidant response and biosorption potential of Bacillus simplex strain 115 against lead. World J Microbiol Biotechnol 2021; 37:44. [PMID: 33547493 DOI: 10.1007/s11274-021-03009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
In this study, we investigated effects of lead on growth response and antioxidant defense protection in a new identified strain isolated from a soil, in the rhizosphere of Sainfoin Hedysarum coronarium L. Different concentrations of lead (0, 0.2, 1.5 and 3 g L-1) added to Bacillus simplex strain 115 cultures surprisingly did not inhibit its growth. However, a resulting oxidative stress as attested by overproduction of H2O2 (+ 6.2 fold) and malondialdehyde (+ 2.3 fold) concomitantly to the enhancement of proteins carbonylation (+ 221%) and lipoxygenase activity (+ 59%) was observed in presence of 3 g L-1 of lead. Intrinsic antioxidant defenses were revealed by the coupled up-regulation of catalase (+ 416%) and superoxide dismutase (+ 4 fold) activities, with a more important Fe-SOD increase in comparison to the other isoforms. Bioaccumulation assays showed both intracellular and extracellular lead accumulation. Biosorption was confirmed as a particularly lead resistance mechanism for Bacillus simplex strain 115 as the metal sequestration in cell wall accounted for 88.5% to 98.5% of the total endogenous metal accumulation. Potentiality of this new isolated microorganism as a biotechnological tool for agricultural soil lead bioremediation was thus proposed.
Collapse
Affiliation(s)
- Anissa Chamekh
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Oussema Kharbech
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Rim Driss-Limam
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Cheima Fersi
- National Institute for Research and Physico-Chemical Analyses, 2020, Sidi Thabet, Tunisia
| | - Mohamed Khouatmeya
- National Center for Nuclear Sciences and Technologies, 2020, Sidi Thabet, Tunisia
| | - Rakia Chouari
- Laboratory of Plant Toxicology and Environmental Microbiology (LR 18ES38), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| |
Collapse
|
8
|
Zhang J, Wang H, Huang Q, Zhang Y, Zhao L, Liu F, Wang G. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. World J Microbiol Biotechnol 2020; 36:12. [PMID: 31897767 DOI: 10.1007/s11274-019-2786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Superoxide dismutases (SODs) have been shown to exhibit high levels of conservation and exist in almost all aerobic organisms and even many strict anaerobes. There are four SODs in Bacillus cereus 0-9, and this coexistence of multiple homologous enzymes is of great significance in the evolution of bacteria. We hypothesized that the four sod genes in B. cereus 0-9 constituted non-redundant protection against oxidative damage in vivo and played unique roles in the pathogenicity of B. cereus 0-9 during different phases or growth environments. To test this hypothesis, we constructed four single-knockout mutants (∆sodA1, ∆sodA2, ∆sodS, and ∆sodC) and a mutant lacking all four sod genes (∆sod-4) of B. cereus 0-9 and assessed their various phenotypes. Our results indicated that sodA1 plays a major role in tolerance to intracellular oxidative stress and spore formation. The ∆sodA1 and ∆sod-4 mutants were very sensitive to oxidants. The spore formation of the ∆sodA1 mutant was dramatically delayed, and the ∆sod-4 mutant did not form any spores under our experimental conditions. The sodA2 gene may play an important role in negative regulation of swarming motility, pathogenicity, and phospholipase and haemolytic activity of B. cereus but also a role in positive regulation of biofilm formation under our experimental conditions. The other two genes, sodS and sodC, were key to the pathogenicity of B. cereus. The lethal rates of Helicoverpa armigera infected by the ∆sodS and ∆sodC mutants were only 26.67%, while wild-type B. cereus 0-9 caused lethality in up to 86.67% of the insects at 24 h after injection. Moreover, the ∆sod-4 mutant caused a reduced death rate of H. armigera of 46.70%, which was slightly higher than that caused by the ∆sodS and ∆sodC strains. Thus, these four sod genes were non-redundant for oxidative stress and may play different additional roles in B. cereus 0-9. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9 and lay a theoretical foundation for further research.
Collapse
Affiliation(s)
- Juanmei Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,Pharmaceutical College, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Haodong Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Qiubin Huang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Linlin Zhao
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Fengying Liu
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Gang Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
9
|
Comparative genomic analysis reveals genetic features related to the virulence of Bacillus cereus FORC_013. Gut Pathog 2017; 9:29. [PMID: 28515790 PMCID: PMC5433235 DOI: 10.1186/s13099-017-0175-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus is well known as a gastrointestinal pathogen that causes food-borne illness. In the present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with the published genomes of other B. cereus strains. RESULTS We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, we detected that the enterotoxin (NHE, HBL, CytK) induces food-borne illness with diarrheal symptom, and that the pleiotropic regulator, along with other virulence factors, plays a role in surviving and biofilm formation. Through comparative analysis using the complete genome sequence of B. cereus FORC_013, we identified both positively selected genes related to virulence regulation and 224 strain-specific genes of FORC_013. CONCLUSIONS Through genome analysis of B. cereus FORC_013, we identified multiple virulence factors that may contribute to pathogenicity. These results will provide insight into further studies regarding B. cereus pathogenesis mechanism at the genomic level.
Collapse
|
10
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Behera M, Dandapat J, Rath CC. Effect of heavy metals on growth response and antioxidant defense protection in Bacillus cereus. J Basic Microbiol 2014; 54:1201-9. [PMID: 24852506 DOI: 10.1002/jobm.201300805] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/09/2014] [Indexed: 12/29/2022]
Abstract
Bacterial cells in aerobic environment generate reactive oxygen species which may lead to oxidative stress, induced by a wide range of environmental factors including heavy metals. In the present context an attempt has been made to determine the toxic impact of cadmium and copper on growth performance, oxidative stress, and relative level of antioxidant protection in Bacillus cereus. Outcome of this study suggests that both the metal ions depleted the growth rate in this organism with respect to time and concentration of the metal ions. CdCl2 exposure induced extracellular glutathione (GSH) production, whereas, its level was declined in response to CuSO4. Superoxide dismutase (SOD) activity and hydrogen peroxide (H2 O2 ) content was elevated under CdCl2 stress but the activity of catalase (CAT) was inhibited. In contrast, incubation of bacteria with CuSO4 exhibited decreased SOD activity with concomitant rise in CAT activity and H2 O2 content. We also observed elevation of intracellular GSH level in this bacteria following supplementation of N-acetyl cysteine (NAC) in the medium. Overall findings of this study indicated differential toxicity of CdCl2 and CuSO4 in inducing oxidative stress, depleting growth rate and the possible involvement of GSH and CAT in adaptive antioxidant response.
Collapse
Affiliation(s)
- Madhumita Behera
- Department of Botany, North Orissa University, Baripada, Odisha, India
| | | | | |
Collapse
|