1
|
Doan CT, Tran TN, Tran TPH, Nguyen TT, Nguyen HK, Tran TKT, Vu BT, Trinh THT, Nguyen AD, Wang SL. Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii. Polymers (Basel) 2023; 15:3724. [PMID: 37765578 PMCID: PMC10537793 DOI: 10.3390/polym15183724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Ngoc Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Huu Kien Nguyen
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Kim Thi Tran
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Bich Thuy Vu
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Thi Huyen Trang Trinh
- Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.); (T.P.H.T.); (T.T.N.); (H.K.N.); (T.K.T.T.); (B.T.V.); (T.H.T.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
2
|
Abedin RMA, Abd Elwaly DRM, Abd El-Salam AE. Production, statistical evaluation and characterization of chitosanase from Fusarium oxysporum D18. ANN MICROBIOL 2023; 73:27. [DOI: 10.1186/s13213-023-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Purpose
The present research work focuses on the extraction of chitosanase enzyme from soil fungi. Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides which are new biomaterials that have many biological activities such as antitumour, antioxidant, antidiabetic and antimicrobial.
Method
A strain producing chitosanase was screened and identified as Fusarium oxysporum D18 with an accession number OL343607. Various physiological parameters (incubation type, carbon source, additive nitrogen source, statistical evaluation, solid state fermentation) were assessed to increase chitosanase production.
Results
Fusarium oxysporum D18 produced a considerable value of chitosanase (1.220 U/ml). After 7 days of incubation, the best carbon source was lactose, and the best nitrogen source was ammonium chloride. Statistical evaluation was carried out by using Plackett–Burman and Box-Behnken designs. The highest chitosanase production (1.994 U/ml) was induced by the medium composition g/l: KH2PO4 (1.5), MgSO4 (0.269), lactose (18), NH4Cl (1.26), pH (6.68), using a 5-day-old inoculum and chitosanase activity was 1.63 folds that of the original medium. The production of chitosanase by Fusarium oxysporum D18 in solid state cultures using different solid substrates was studied and the best solid substrate for higher chitosanase activity (2.246 U/ml) was raw shrimp heads and shells and chitosanase activity was 1.13 folds that of the optimized liquid cultures. An extracellular chitosanase was isolated and partially purified by using 75% saturation of ammonium sulphate. The highest chitosanase activity (3.667 U/ml) with a specific activity of 0.390 U/mg protein was obtained at enzyme protein concentration of 9.391 mg/ml, substrate concentration of 1.2 % (w/v), Vmax of the enzyme of approximately 0.430 U/mg protein, and KM of 0.26 % (w/v), at pH 5.6 and reaction temperature of 50 °C. The activity of the purified and characterized chitosanase increased by 3 times than that the original isolate activity. The enzyme was thermostable and retained about 55% of its original activity after heating at 70 °C for 15 min. The enzyme preparations were activated by Ca2+ ions and inactivated by Zn+2, Cu+2 ions, and EDTA.
Conclusion
An antitumour activity of chitooligosaccharides produced by the chitosanase was applied to the MCF-7 (breast carcinoma cells) and they had a cytotoxicity inhibitory effect against them about IC50 = 448 μg/ml.
Collapse
|
3
|
Abedin RMA, Elwaly DRMA, El-salam AEA. Production, Statistical Evaluation and Characterization of Chitosanase from Fusarium oxysporum D18.. [DOI: 10.21203/rs.3.rs-2898996/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Purpose The present research work focuses on the extraction of chitosanase enzyme from soil fungi. Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides which are new biomaterials that have many biological activities such as antitumor, antioxidant, antidiabetic and antimicrobial.
Method: A strain producing chitosanase was screened and identified as Fusarium oxysporum D18 with an accession number OL343607. Various physiological parameters (incubation type, carbon source, additive nitrogen source, statistical evaluation, solid state fermentation) were assessed to increase chitosanase production.
Results: Fusarium oxysporum D18 produced a considerable value of chitosanase, (1.220 U/ml). after 7 days of incubation, the best carbon source was lactose, and the best nitrogen source was ammonium chloride. Statistical evaluation was carried out by using Plackett-Burman and Box-Behnken designs. The highest chitosanase production, (1.994 U/ml) was induced by the medium composition g/L: KH2PO4 (1.5), MgSO4 (0.269), lactose (18), NH4Cl (1.26), pH (6.68), using a 5-day old inoculum and chitosanase activity was 1.63 folds that of the original medium. The production of chitosanase by Fusarium oxysporum D18 in solid state cultures using different solid substrates was studied and the best solid substrate for higher chitosanase activity (2.246 U/ml) was raw shrimp heads and shells and chitosanase activity was 1.13 folds that of the optimized liquid cultures. An extracellular chitosanase was isolated and partially purified by using 75 % saturation of ammonium sulphate. The highest chitosanase activity (3.667 U/ml) was obtained at enzyme protein concentration, (9.391 mg/ml), substrate concentration, (1.20%), Vmax of the enzyme was approximately (4.04 U/ml), km was (0.26%), at pH, (5.6) and reaction temperature, (50°C). The activity of the purified and characterized chitosanase increased by 3 times than that the original isolate activity. The enzyme was thermostable and retained about 55% of its original activity after heating at 70°C for 15 min. The enzyme preparations were activated by Ca2+ ions and inactivated by Zn+2, Cu+2 ions, and EDTA.
Conclusion: An antitumor activity of chitooligosaccharides produced by the chitosanase was applied to the MCF-7 (breast carcinoma cells) and they had a cytotoxicity inhibitory effect against them about IC50 = (448 μg/ml).
Collapse
|
4
|
Zhang H, Wu J. Statistical optimization of aqueous ammonia pretreatment and enzymatic hydrolysis of corn cob powder for enhancing sugars production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Pang Y, Yang J, Chen X, Jia Y, Li T, Jin J, Liu H, Jiang L, Hao Y, Zhang H, Xie Y. An Antifungal Chitosanase from Bacillus subtilis SH21. Molecules 2021; 26:molecules26071863. [PMID: 33806149 PMCID: PMC8036696 DOI: 10.3390/molecules26071863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatography, and ion-exchange chromatography were used. The purity of the purified product was 91.33% according to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analysis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. Scanning and transmission electron microscopy revealed that chitosanase SH21 appeared to inhibit the growth of F. solani by causing hyphal ablation, distortion, or abnormalities, and cell-wall depression. The minimum inhibitory concentration of chitosanase SH21 against F. solani was 68 µg/mL. Subsequently, the corresponding gene was cloned and sequenced, and sequence analysis indicated an open reading frame of 831 bp. The predicted secondary structure indicated that chitosanase SH21 has a typical a-helix from the glycoside hydrolase (GH) 46 family. The tertiary structure shared 40% similarity with that of Streptomyces sp. N174. This study provides a theoretical basis for a topical cream against fungal infections in agriculture and a selection marker on fungi.
Collapse
Affiliation(s)
- Yuanxiang Pang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Jianjun Yang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Xinyue Chen
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Yu Jia
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Tong Li
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Junhua Jin
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Hui Liu
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Linshu Jiang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy Science of Beijing and Chinese Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Hongxing Zhang
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
- Correspondence: (H.Z.); (Y.X.)
| | - Yuanhong Xie
- Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; (Y.P.); (J.Y.); (X.C.); (Y.J.); (T.L.); (J.J.); (H.L.); (L.J.)
- Correspondence: (H.Z.); (Y.X.)
| |
Collapse
|
6
|
Zhang C, Li Y, Zhang T, Zhao H. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered 2021; 12:266-277. [PMID: 33356788 PMCID: PMC8806256 DOI: 10.1080/21655979.2020.1869438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chitosan hydrolysis by chitosanase is one of the most effective methods to produce chitosan oligosaccharides. One of the prerequisites of enzyme fermentation production is to select and breed enzyme-producing cells with good performance. So in the process of fermentation production, the low yield of chitosanase cannot meet the current requirement. In this paper, a strain producing chitosanase was screened and identified, and a novel mutagenesis system (Atmospheric and Room Temperature Plasma (ARTP)) was selected to increase the yield of chitosanase. Then, the fermentation medium was optimized to further improve the enzyme activity of the strain. A strain of Bacillus cereus capable of producing chitosanase was screened and identified from soil samples. A mutant strain of B.cereus was obtained by Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method, and chitosanase activity was 2.49 folds that of the original bacterium. After an optimized fermentation medium, the enzyme activity of the mutant strain was 1.47 folds that of the original bacterium. Combined with all the above optimization experiments, the enzyme activity of mutant strain increased by 3.66 times. The results showed that the Atmospheric and Room Temperature Plasma mutagenesis and bioscreening method could significantly increase the yield of chitosanase in B.cereus, and had little effect on the properties of the enzyme. These findings have potential applications in the mutagenesis of other enzyme-producing microorganisms.
Collapse
Affiliation(s)
- Chaozheng Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Tianshuang Zhang
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| | - Hua Zhao
- Key Laboratory of Ministry of Education Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology , Tianjin, P. R. China
| |
Collapse
|
7
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Yano S. Statistical optimization of halophilic chitosanase and protease production by Bacillus cereus HMRSC30 isolated from Terasi simultaneous with chitin extraction from shrimp shell waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Affes S, Maalej H, Aranaz I, Acosta N, Heras Á, Nasri M. Enzymatic production of low-Mw chitosan-derivatives: Characterization and biological activities evaluation. Int J Biol Macromol 2020; 144:279-288. [DOI: 10.1016/j.ijbiomac.2019.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/30/2022]
|
9
|
Yang G, Sun H, Cao R, Liu Q, Mao X. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5. Int J Biol Macromol 2020; 146:518-523. [PMID: 31917207 DOI: 10.1016/j.ijbiomac.2020.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Chitosanases play an important role in chitosan degradation, and the enzymatic degradation products of chitosan show various biological activities. Here, a novel glycoside hydrolase family 46 chitosanase (named Csn-BAC) from Bacillus sp. MD-5 was heterologously expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified by Ni-NTA affinity chromatography, and its molecular weight was estimated to be 35 kDa by SDS-PAGE. Csn-BAC showed maximal activity toward colloidal chitosan at pH 7 and 40 °C. The enzymatic activity of Csn-BAC was enhanced by Mn2+, Cu2+ and Co2+ at 1 mM, and by Mn2+ at 5 mM. Thin-layer chromatography and electrospray ionization-mass spectrometry results demonstrated that Csn-BAC exhibited an endo-type cleavage pattern and hydrolyzed chitosan to yield, mainly, (GlcN)2 and (GlcN)3. The enzymatic properties of this chitosanase may make it a good candidate for use in oligosaccharide production-based industries.
Collapse
Affiliation(s)
- Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
11
|
Aktuganov GE, Melentiev AI, Varlamov VP. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Lin S, Qin Z, Chen Q, Fan L, Zhou J, Zhao L. Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6847-6855. [PMID: 31132258 DOI: 10.1021/acs.jafc.9b01608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitooligosaccharide has been reported to possess diverse bioactivities. The development of novel strategies for obtaining optimum degree of polymerization (DP) chitooligosaccharides has become increasingly important. In this study, two glycoside hydrolase family 46 chitosanases were studied for immobilization on curdlan (insoluble β-1,3-glucan) using a novel carbohydrate binding module (CBM) family 56 domain from a β-1,3-glucanase. The CBM56 domain provided a spontaneous and specific sorption of the fusion proteins onto a curdlan carrier, and two fusion enzymes showed increased enzyme stability in comparison with native enzymes. Furthermore, a continuous packed-bed reactor was constructed with chitosanase immobilized on a curdlan carrier to control the enzymatic hydrolysis of chitosan. Three chitooligosaccharide products with different molecular weights were prepared in optimized reaction conditions. This study provides a novel CBM tag for the stabilization and immobilization of enzymes. The controllable hydrolysis strategy offers potential for the industrial-scale preparation of chitooligosaccharides with different desired DPs.
Collapse
Affiliation(s)
- Si Lin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhen Qin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Qiming Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Jiachun Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| |
Collapse
|
13
|
Liaqat F, Sözer Bahadır P, Elibol M, Eltem R. Optimization of chitosanase production by Bacillus mojavensis EGE-B-5.2i. J Basic Microbiol 2018; 58:836-847. [PMID: 30022499 DOI: 10.1002/jobm.201800132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 11/06/2022]
Abstract
Maximum production of industrially important enzymes such as chitosanases through media optimization still holds foremost interest. The present study was conducted to improve chitosanase activity of an indigenous strain identified as Bacillus mojavensis. Initially, carbon and nitrogen sources were optimized by one-variable-at-a-time approach. Further, fermentation medium was optimized using Plackett-Burman (PB) and central composite designs (CCD). PB verified soluble starch (SS), colloidal chitosan (CC) peptone, and NaCl as most significant variables affecting chitosanase production. CCD results predicted the optimum concentrations of SS, CC, peptone, and NaCl as 7.8, 7.0, 6.5, and 2.7 g L-1 , respectively to achieve maximum chitosanase activity (21.1 U ml-1 ). Discovery of the novel optimal medium has improved chitosanase production by B. mojavensis up-to 9.5 folds. Lastly, 18.6 U ml-1 chitosanase activity was achieved in stirred tank bioreactor using optimal medium, which is quite satisfactory to proclaim this strain as a potential candidate to provide commercial chitosanase.
Collapse
Affiliation(s)
- Fakhra Liaqat
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Ege University, Izmir, Turkey
| | - Pınar Sözer Bahadır
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE MATAL), Izmir, Turkey.,Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Murat Elibol
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| |
Collapse
|
14
|
Embaby AM, Melika RR, Hussein A, El-Kamel AH, S.Marey H. Biosynthesis of chitosan-Oligosaccharides (COS) by non-aflatoxigenic Aspergillus sp. strain EGY1 DSM 101520: A robust biotechnological approach. Process Biochem 2018; 64:16-30. [DOI: 10.1016/j.procbio.2017.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3909657. [PMID: 28321408 PMCID: PMC5340989 DOI: 10.1155/2017/3909657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings, Bacillus sp. IND12 was selected for fibrinolytic enzyme production. Bacillus sp. IND12 effectively used cow dung for its growth and enzyme production (687 ± 6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4 were the vital parameters with statistical significance (p < 0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed 4143 ± 12.31 U/g material, which was more than fourfold the initial enzyme production (978 ± 36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p < 0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83 ± 3.6%), egg white (100%), and bovine serum albumin (29 ± 4.9%).
Collapse
|
16
|
Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3 Biotech 2016; 6:174. [PMID: 28330246 PMCID: PMC4991975 DOI: 10.1007/s13205-016-0485-8] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Abstract Biocatalytic potential of microorganisms have been employed for centuries to produce bread, wine, vinegar and other common products without understanding the biochemical basis of their ingredients. Microbial enzymes have gained interest for their widespread uses in industries and medicine owing to their stability, catalytic activity, and ease of production and optimization than plant and animal enzymes. The use of enzymes in various industries (e.g., food, agriculture, chemicals, and pharmaceuticals) is increasing rapidly due to reduced processing time, low energy input, cost effectiveness, nontoxic and eco-friendly characteristics. Microbial enzymes are capable of degrading toxic chemical compounds of industrial and domestic wastes (phenolic compounds, nitriles, amines etc.) either via degradation or conversion. Here in this review, we highlight and discuss current technical and scientific involvement of microorganisms in enzyme production and their present status in worldwide enzyme market. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi, 110007, India
| | - Manoj Kumar
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi, 110007, India
| | - Anshumali Mittal
- Mill Hill Laboratory, Division of Structural Biology and Biophysics, The Francis Crick Institute, London, UK
| | - Praveen Kumar Mehta
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
17
|
Recent Progress in Chitosanase Production of Monomer-Free Chitooligosaccharides: Bioprocess Strategies and Future Applications. Appl Biochem Biotechnol 2016; 180:883-899. [PMID: 27206559 DOI: 10.1007/s12010-016-2140-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Biological activities of chitosan oligosaccharides (COS) are well documented, and numerous reports of COS production using specific and non-specific enzymes are available. However, strategies for improving the overall yield by making it monomer free need to be developed. Continuous enzymatic production from chitosan derived from marine wastes is desirable and is cost-effective. Isolation of potential microbes showing chitosanase activity from various ecological niches, gene cloning, enzyme immobilization, and fractionation/purification of COS are some areas, where lot of work is in progress. This review covers recent measures to improve monomer-free COS production using chitosanase/non-specific enzymes and purification/fractionation of these molecules using ultrafiltration and column chromatographic techniques. Various bioprocess strategies, gene cloning for enhanced chitosanase enzyme production, and other measures for COS yield improvements have also been covered in this review. COS derivative preparation as well as COS-coated nanoparticles for efficient drug delivery are being focused in recent studies.
Collapse
|
18
|
Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydr Polym 2014; 108:331-7. [PMID: 24751281 DOI: 10.1016/j.carbpol.2014.02.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 11/20/2022]
Abstract
Chitosanases have received much attention because of their wide range of applications. Although most fungal chitosanases use sugar as their major carbon source, in the present work, a chitosanase was induced from a squid pen powder (SPP)-containing Penicillium janthinellum D4 medium and purified by ammonium sulphate precipitation and combined column chromatography. The purified D4 chitosanase exhibited optimum activity at pH 7-9, 60°C and was stable at pH 7-11, 25-50°C. The D4 chitosanase that was used for chitooligomers preparation was studied. The enzyme products revealed various chitooligomers with different degrees of polymerisation (DP) from 3 to 9, as determined by a MALDI-TOF mass spectrometer, confirming the endo-type nature of the D4 chitosanase. D4 chitosanase activity was significantly inhibited by Cu(2+), Mn(2+), and EDTA. However, Fe(2+) activated or inhibited D4 chitosanases at different concentrations. The D4 chitosanase was also activated by some small synthetic boron-containing molecules with boronate ester side chains.
Collapse
|
19
|
Vijayaraghavan P, Vincent SGP. Statistical optimization of fibrinolytic enzyme production by Pseudoalteromonas sp. IND11 using cow dung substrate by response surface methodology. SPRINGERPLUS 2014; 3:60. [PMID: 24516788 PMCID: PMC3915052 DOI: 10.1186/2193-1801-3-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022]
Abstract
Fibrinolytic enzymes are agents that dissolve fibrin clots. These fibrinolytic agents have potential use to treat cardiovascular diseases, such as heart attack and stroke. In the present article, a fibrinolytic enzyme producing Pseudoalteromonas sp. IND11 was isolated from the fish scales and optimized for enzyme production. Cow dung was used as a substrate for the production of fibrinolytic enzyme in solid-state culture. A two-level full factorial design was used for the screening of key ingredients while further optimization was carried out using the central composite design. Statistical analysis revealed that the second-order model is significant with model F-value of 6.88 and R2 value of 0.860. Enzyme production was found to be high at pH 7.0, and the supplementation of 1% (w/w) maltose and 0.1% (w/w) sodium dihydrogen phosphate enhanced fibrinolytic enzyme production. The optimization of process parameters using response surface methodology resulted in a three-fold increase in the yield of fibrinolytic enzyme. This is the first report on production of fibrinolytic enzyme using cow dung substrate in solid-state fermentation.
Collapse
Affiliation(s)
- Ponnuswamy Vijayaraghavan
- International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam-629 502, Kanyakumari District, Tamil Nadu India
| | - Samuel Gnana Prakash Vincent
- International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam-629 502, Kanyakumari District, Tamil Nadu India
| |
Collapse
|
20
|
Thadathil N, Velappan SP. Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 2013; 150:392-9. [PMID: 24360467 DOI: 10.1016/j.foodchem.2013.10.083] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Chitosanases (EC 3.2.1.132) are glycosyl hydrolases that catalyse the endohydrolysis of β-1,4-glycosidic bonds of partially acetylated chitosan to release chitosan oligosaccharides (COS). Chitosanases are isolated, purified and characterised from different sources mainly from bacteria and fungi. Chitosanases have received much attention due to their wide range of applications including the preparation of bioactive COS and fungal protoplasts, as biocontrol agent against pathogenic fungi and insects, the bioconversion of chitinous bio waste associated with seafood processing, etc. Bioactive COS produced by the enzymatic hydrolysis of chitosan have finds numerous health benefits as well as other biological activities. This review summarizes the recent advances in chitosanases research, the enzyme production processes, characterization, genetic improvement and their applications.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| | - Suresh Puthanveetil Velappan
- Academy of Scientific and Innovative Research, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
21
|
|