1
|
Effect of bacteria on oil/water interfacial tension in asphaltenic oil reservoirs. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Sun S, Song X, Bian Y, Wan X, Zhang J, Wang W. Multi-parameter optimization maximizes the performance of genetically engineered Geobacillus for degradation of high-concentration nitroalkanes in wastewater. BIORESOURCE TECHNOLOGY 2022; 347:126690. [PMID: 35007737 DOI: 10.1016/j.biortech.2022.126690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
Nitroalkanes are important toxic pollutants for which there is no effective removal method at present. Although genetic engineering bacteria have been developed as a promising bioremediation strategy for years, their actual performance is far lower than expected. In this study, important factors affecting the application of engineered Geobacillus for nitroalkanes degradation were comprehensively optimized. The deep-reconstructed engineered strains significantly raised the expression and activity level of catalytic enzymes, but failed to fully enhance the degradation efficiency. However, further debugging of a variety of key parameters effectively improved the performance of the engineering strains. The increased cell membrane permeability, trace supplementation of vital nutritional factors, synergy of multifunctional enzyme engineered bacteria, switch of oxygen-supply mode, and moderate initial biomass all effectively boosted the degradation efficiency. Finally, a low-cost and highly effective bioreactor test for high-concentration nitroalkanes degradation proved the multi-parameter optimization mode helps to maximize the performance of genetically engineered bacteria.
Collapse
Affiliation(s)
- Shenmei Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xiaoru Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Ya Bian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xuehua Wan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
4
|
Zhang B, Sun L, Song X, Huang D, Li M, Peng C, Wang W. Genetically engineered thermotolerant facultative anaerobes for high-efficient degradation of multiple hazardous nitroalkanes. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124253. [PMID: 33144004 DOI: 10.1016/j.jhazmat.2020.124253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Nitroalkanes are important industrial raw materials but also toxic pollutants, which are difficult to degrade once released into the environment. In this study, to significantly improve the degradation-efficiency of multiple nitroalkanes, a facultative anaerobe was genetically engineered, possible influencing factors and simulated application experiments of bioreactor were tested and evaluated. Among all engineered recombinants, the most effective strains NG-S1 (anaerobic) and NG-S2 (aerobic) displayed 2-fold and 2.8-fold final degradation rates higher than the wild type, respectively. Exogenous components, particularly those that enhance coenzyme synthesis, helped to increase the degradation rate, as the level of coenzymes affected full function of overexpressed nitroalkane oxidase. Importantly, simulated mixed-nitroalkane-wastewater bioreactor experiments proved excellent and sustainable degradation performance of the engineered strains for potential industrial applications. Collectively, these findings provide a promising thermophilic biological engineering platform and a new perspective for high-efficient and continuous environmental bioremediation of hazardous pollutants under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xiaoru Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA. Microbial Biodegradation of Paraffin Wax in Malaysian Crude Oil Mediated by Degradative Enzymes. Front Microbiol 2020; 11:565608. [PMID: 33013795 PMCID: PMC7506063 DOI: 10.3389/fmicb.2020.565608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37–C40 and increase the ratio of C14–C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
Collapse
Affiliation(s)
- Nur Aina Adlan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malihe Masomian
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Domingues PM, Oliveira V, Serafim LS, Gomes NCM, Cunha Â. Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051746. [PMID: 32156011 PMCID: PMC7084516 DOI: 10.3390/ijerph17051746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Hydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims at screening populations of culturable hydrocarbonoclastic and biosurfactant (BSF) producing bacteria from deep sub-seafloor sediments (mud volcanos from Gulf of Cadiz) and estuarine sub-surface sediments (Ria de Aveiro) for strains with potential to operate in sub-oxic conditions. Isolates were retrieved from anaerobic selective cultures in which crude oil was provided as sole carbon source and different supplements were provided as electron acceptors. Twelve representative isolates were obtained from selective cultures with deep-sea and estuary sediments, six from each. These were identified by sequencing of 16S rRNA gene fragments belonging to Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera. BSF production by the isolates was tested by atomized oil assay, surface tension measurement and determination of the emulsification index. All isolates were able to produce BSFs under aerobic and anaerobic conditions, except for isolate DS27 which only produced BSF under aerobic conditions. These isolates presented potential to be applied in bioremediation or microbial enhanced oil recovery strategies under conditions of oxygen limitation. For the first time, members of Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera are described as anaerobic producers of BSFs.
Collapse
Affiliation(s)
- Patrícia M. Domingues
- Department of Chemistry and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Newton C. M. Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-234-370-784
| |
Collapse
|
7
|
Wang D, Lin J, Lin J, Wang W, Li S. Biodegradation of Petroleum Hydrocarbons by Bacillus subtilis BL-27, a Strain with Weak Hydrophobicity. Molecules 2019; 24:molecules24173021. [PMID: 31438460 PMCID: PMC6749392 DOI: 10.3390/molecules24173021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
The biodegradation of petroleum hydrocarbons has many potential applications and has attracted much attention recently. The hydrocarbon-degrading bacterium BL-27 was isolated from petroleum-polluted soil and was compounded with surfactants to improve biodegradation. Its 16S rDNA and rpoD gene sequences indicated that it was a strain of Bacillus subtilis. Strain BL-27 had extensive adaptability and degradability within a broad range of temperatures (25–50 °C), pH (4.0–10.0) and salinity (0–50 g/L NaCl). Under optimal conditions (45 °C, pH 7.0, 1% NaCl), the strain was able to degrade 65% of crude oil (0.3%, w/v) within 5 days using GC-MS analysis. Notably, strain BL-27 had weak cell surface hydrophobicity. The adherence rate of BL-27 to n-hexadecane was 29.6% with sucrose as carbon source and slightly increased to 33.5% with diesel oil (0.3%, w/v) as the sole carbon source, indicating that the cell surface of BL-27 is relatively hydrophilic. The strain was tolerant to SDS, Tween 80, surfactin, and rhamnolipids at a concentration of 500 mg/L. The cell surface hydrophobicity reduced more with the addition of surfactants, while the chemical dispersants, SDS (50–100 mg/L) and Tween 80 (200–500 mg/L), significantly increased the strain’s ability to biodegrade, reaching 75–80%. These results indicated that BL-27 has the potential to be used for the bioremediation of hydrocarbon pollutants and could have promising applications in the petrochemical industry.
Collapse
Affiliation(s)
- Dan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jiahui Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying 257000, China
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying 257000, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
8
|
Arora P, Kshirsagar PR, Rana DP, Dhakephalkar PK. Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96 °C in lab studies. Colloids Surf B Biointerfaces 2019; 182:110372. [PMID: 31369953 DOI: 10.1016/j.colsurfb.2019.110372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
Abstract
Biosurfactant producing hypethermophilic microorganisms are essentially required for Microbial Enhanced Oil Recovery (MEOR) from high temperature oil reservoirs (above 90 °C). In the present study, biosurfactant producing Clostridium sp. N-4, optimally growing at 96 °C was isolated from a high temperature oil reservoir. Effect of pH, temperature and salinity on production and activity of N-4 biosurfactant was investigated. Biosurfactant produced by N-4 was partially purified by acid precipitation, characterized using FT-IR spectroscopy; and evaluated for its ability to enhance oil recovery in sand pack studies. The strain N-4 produced biosurfactant over a wide range of pH (5.0-9.0) and salinity (0-13%) at high temperature (80-100 °C) and optimally at pH 7, 96 °C and 4% salinity. N-4 biosurfactant was active at 37-101 °C; pH, 5-10 and salinity of 0-12 % (w/v). N-4 biosurfactant, characterized as glycoprotein reduced the surface tension of water by 32 ± 0.4 mN/m at critical micelle concentration of 100 μg/ml. N-4 biosurfactant mobilized 17.15% of residual oil saturation in sand pack studies. Similarly, the strain N-4 also recovered 36.92% of the residual oil in sand pack studies under the conditions mimicking the environment of depleted high temperature oil reservoir. Thus, the biosurfactant producing Clostridium sp. N-4 was identified as a suitable agent for enhanced oil recovery from high temperature oil reservoirs.
Collapse
Affiliation(s)
- Preeti Arora
- Bioenergy Group, MACS-Agharkar Research Institute, Affiliated to Savitribai Phule Pune University, Ganeshkhind, G.G. Agarkar Road, Pune, 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - P R Kshirsagar
- Bioenergy Group, MACS-Agharkar Research Institute, Affiliated to Savitribai Phule Pune University, Ganeshkhind, G.G. Agarkar Road, Pune, 411004, India
| | - Dolly Pal Rana
- Institute of Reservoir Studies, Oil and Natural Gas Corporation Ltd., Chandkheda, Ahmedabad, 380005, India
| | - P K Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, Affiliated to Savitribai Phule Pune University, Ganeshkhind, G.G. Agarkar Road, Pune, 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
9
|
Sun L, Huang D, Zhu L, Zhang B, Peng C, Ma T, Deng X, Wu J, Wang W. Novel thermostable enzymes from Geobacillus thermoglucosidasius W-2 for high-efficient nitroalkane removal under aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2019; 278:73-81. [PMID: 30682639 DOI: 10.1016/j.biortech.2019.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, a thermophilic facultative anaerobic strain Geobacillus thermoglucosidasius W-2 was found to degrade nitroalkane under both aerobic and anaerobic conditions. Bioinformatical analysis revealed three putative nitroalkane-oxidizing enzymes (Gt-NOEs) genes from the W-2 genome. The three identified proteins Gt2929, Gt1378, and Gt1208 displayed optimal activities at high temperatures (70, 70, and 80 °C, respectively). Among these, Gt2929 exhibited excellent degradation capability, pH stability, and metal ion tolerance for nitronates under aerobic condition. Interestingly, under anaerobic condition, only Gt1378 still maintained high activity for 2-nitropropane and nitroethane, indicating that the W-2 strain utilized various pathways to degrade nitronates under aerobic and anaerobic conditions, respectively. Taken together, the first revelation of thermophilic nitroalkane-degrading mechanism under both aerobic and anaerobic conditions provides guidance and platform for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Lin Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Junli Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
10
|
Sacco LP, Castellane TCL, Lopes EM, de Macedo Lemos EG, Alves LMC. Properties of Polyhydroxyalkanoate Granules and Bioemulsifiers from Pseudomonas sp. and Burkholderia sp. Isolates Growing on Glucose. Appl Biochem Biotechnol 2015; 178:990-1001. [PMID: 26578147 DOI: 10.1007/s12010-015-1923-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022]
Abstract
A Burkholderia and Pseudomonas species designated as AB4 and AS1, respectively, were isolated from soil containing decomposing straw or sugar cane bagasse collected from Brazil. This study sought to evaluate the capacities of culture media, cell-free medium, and crude lysate preparations (containing PHB inclusion bodies) from bacterial cell cultures to stabilize emulsions with several hydrophobic compounds. Four conditions showed good production of bioemulsifiers (E24 ≥ 50 %), headed by substantially cell-free media from bacterial cell cultures in which bacterial isolates from Burkholderia sp. strain AB4 and Pseudomonas sp. strain AS1 were grown. Our results revealed that the both isolates (AB4 and AS1 strains) exhibited high emulsification indices (indicating usefulness in bioremediation) and good stabilities.
Collapse
Affiliation(s)
- Laís Postai Sacco
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Tereza Cristina Luque Castellane
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil.
| | - Erica Mendes Lopes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil
| | - Lúcia Maria Carareto Alves
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP-Univ Estadual Paulista, Rod. Prof. Paulo Donato Castellane km 5, CEP 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
11
|
Ma HK, Liu MM, Li SY, Wu Q, Chen JC, Chen GQ. Application of polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR as a bio-surfactant and bactericidal agent. J Biotechnol 2013; 166:34-41. [DOI: 10.1016/j.jbiotec.2013.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 01/28/2023]
|