1
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
2
|
Bhuimbar MV, Jalkute CB, Bhagwat PK, Dandge PB. Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. J Biosci Bioeng 2024; 138:21-28. [PMID: 38637241 DOI: 10.1016/j.jbiosc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
A new extracellular protease from Bacillus subtilis strain MPK with collagenolytic activity was isolated and purified. Fish skin which otherwise would be treated as waste is used as substrate for the production of protease. Using various techniques such as ammonium sulphate precipitation and ion exchange chromatography, protease was purified and characterized subsequently. Protease of approximately 61 kDa molecular weight was purified by 135.7-fold with 18.42% enzyme recovery. The protease showed effective properties like pH and temperature stability over a broad range with optimum pH 7.5 and temperature 60 °C. Km and Vmax were found to be 1.92 mg ml-1 and 1.02 × 10-4 mol L-1 min-1, respectively. The protease exhibited stability in various ions, surfactants, inhibitors and organic solvents. Subsequently, the protease was successfully utilized for collagen hydrolysis to generate collagen peptides; thus, the produced protease would be a potential candidate for multifaceted applications in food and pharmaceutical industries due to its significant characteristics and collagenolytic properties.
Collapse
Affiliation(s)
- Madhuri Vijay Bhuimbar
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | - Chidambar Balbhim Jalkute
- PG Department of Microbiology & Research Center, Shri Shivaji Mahavidyalaya, Barshi 413411, MS, India
| | | | | |
Collapse
|
3
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
4
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
5
|
Two-Step Purification and Partial Characterization of Keratinolytic Proteases from Feather Meal Bioconversion by Bacillus sp. P45. Processes (Basel) 2023. [DOI: 10.3390/pr11030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
This study aimed to purify and partially characterize a keratinolytic protease produced by Bacillus sp. P45 through bioconversion of feather meal. Crude protease extract was purified using a sequence of an aqueous two-phase system (ATPS) in large volume systems (10, 50, and 500 g) to increase obtaining purified enzyme, followed by a diafiltration (DF) step. Purified protease was characterized in terms of protein profile analysis by SDS-PAGE, optimum temperature and pH, thermal deactivation kinetics at different temperatures and pH, and performance in the presence of several salts (NaCl, CaCl2, MnCl2, CaO, C8H5KO4, MgSO4, CuSO4, ZnSO4, and FeCl3) and organic solvents (acetone, ethanol, methanol, acetic acid, diethyl ether, and formaldehyde). ATPS with high capacities resulted in purer protease extract without compromising purity and yields, reaching a purification factor up to 2.6-fold and 6.7-fold in first and second ATPS, respectively, and 4.0-fold in the DF process. Recoveries were up to 79% in both ATPS and reached 84.3% after the DF step. The electrophoretic analysis demonstrated a 25–28 kDa band related to keratinolytic protease. The purified protease’s optimum temperature and pH were 55 °C and 7.5, respectively. The deactivation energy (Ed) value was 118.0 kJ/mol, while D (decimal reduction time) and z (temperature interval required to reduce the D value in one log cycle) values ranged from 6.7 to 237.3 min and from 13.6 to 18.8 °C, respectively. Salts such as CaCl2, CaO, C8H5KO4, and MgSO4 increased the protease activity, while all organic solvents caused its decrease. The results are useful for future studies about ATPS scale-up for enzyme purification and protease application in different industrial processes.
Collapse
|
6
|
Marine microbial alkaline protease: An efficient and essential tool for various industrial applications. Int J Biol Macromol 2020; 161:1216-1229. [DOI: 10.1016/j.ijbiomac.2020.06.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
7
|
Chen Z, Zhao L, Chen W, Dong Y, Yang C, Li C, Xu H, Gao X, Chen R, Li L, Xu Z. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zuo Chen
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Lu Zhao
- Department of Bioengineering, Microbiology Laboratory of Sichuan Water Conservancy Vocational College, Dujiangyan, PR China
| | - Wenqian Chen
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Yilun Dong
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Chao Yang
- Department of Bioengineering, Microbiology Laboratory of Sichuan Water Conservancy Vocational College, Dujiangyan, PR China
| | - Chunliu Li
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Hong Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoling Gao
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Rongjun Chen
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Lihua Li
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Zhengjun Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| |
Collapse
|
8
|
Sharma AK, Kikani BA, Singh SP. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18. Int J Biol Macromol 2020; 153:680-696. [PMID: 32145232 DOI: 10.1016/j.ijbiomac.2020.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
This report describes purification strategies, biochemical properties and thermodynamic analysis of an alkaline serine protease from a marine actinomycete, Nocardiopsis dassonvillei strain OK-18. The solvent tolerance, broad thermal-pH stability, favourable kinetics and thermodynamics suggest stability of the enzymatic reaction. The enzyme was active in the range of pH 7-12 and 37-90 °C, optimally at pH 9 and 70 °C. The deactivation rate constant (Kd), half-life (t½), enthalpy (ΔH*), entropy (ΔS*), activation energy (E) and change in free energy (ΔG*) suggested stability and spontaneity of the reaction. β-Sheets as revealed by the Circular dichroism (CD) spectroscopy, were the major elements in the secondary structure of the enzyme, while Fourier-transform infrared spectroscopy (FTIR) indicated the presence of amide I and amide II. Based on the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis, the amino acid sequence had only 38% similarity with other proteases of Nocardiopsis strains, suggesting its novelty. The Ramachandran Plot revealed the location of the amino acid residues in the most favored region. The blood de-staining, gelatin hydrolysis, silver recovery and deproteinization of crab shells established the biotechnological potential of the enzyme.
Collapse
Affiliation(s)
- Amit K Sharma
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
9
|
Soft - sensing modeling based on ABC - MLSSVM inversion for marine low - temperature alkaline protease MP fermentation process. BMC Biotechnol 2020; 20:9. [PMID: 32070325 PMCID: PMC7029510 DOI: 10.1186/s12896-020-0603-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Aiming at the characteristics of nonlinear, multi-parameter, strong coupling and difficulty in direct on-line measurement of key biological parameters of marine low-temperature protease fermentation process, a soft-sensing modeling method based on artificial bee colony (ABC) and multiple least squares support vector machine (MLSSVM) inversion for marine protease fermentation process is proposed. Methods Firstly, based on the material balance and the characteristics of the fermentation process, the dynamic “grey box” model of the fed-batch fermentation process of marine protease is established. The inverse model is constructed by analyzing the inverse system existence and introducing the characteristic information of the fermentation process. Then, the inverse model is identified off-line using MLSSVM. Meanwhile, in order to reduce the model error, the ABC algorithm is used to correct the inverse model. Finally, the corrected inverse model is connected in series to the marine alkaline protease MP fermentation process to form a composite pseudo-linear system, thus, real-time on-line prediction of key biological parameters in fermentation process can be realized. Results Taking the alkaline protease MP fermentation process as an example, the simulation results demonstrate that the soft-sensing modeling method can solve the real-time prediction problem of key biological parameters in the fermentation process on-line, and has higher accuracy and generalization ability than the traditional soft-sensing method of support vector machine. Conclusions The research provides a new method for soft-sensing modeling of key biological parameters in fermentation process, which can be extended to soft-sensing modeling of general nonlinear systems.
Collapse
|
10
|
Wang B, Yu M, Zhu X, Jiang Z. Soft-sensing method based on FDLS-SVM in marine alkaline protease fermentation process. Prep Biochem Biotechnol 2019; 49:783-789. [PMID: 31132010 DOI: 10.1080/10826068.2019.1615506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To overcome the problem that soft-sensing model cannot be updated with the bioprocess changes, this article proposed a soft-sensing modeling method which combined fuzzy c-means clustering (FCM) algorithm with least squares support vector machine theory (LS-SVM). FCM is used for separating a whole training data set into several clusters with different centers, each subset is trained by LS-SVM and sub-models are developed to fit different hierarchical property of the process. The new sample data that bring new operation information is introduced in the model, and the fuzzy membership function of the sample to each clustering is first calculated by the FCM algorithm. Then, a corresponding LS-SVM sub-model of the clustering with the largest fuzzy membership function is used for performing dynamic learning so that the model can update online. The proposed method is applied to predict the key biological parameters in the marine alkaline protease MP process. The simulation result indicates that the soft-sensing modeling method increases the model's adaptive abilities in various operation conditions and can improve its generalization ability.
Collapse
Affiliation(s)
- Bo Wang
- a School of Electrical and Information Engineering, JiangSu University , Zhenjiang , China
| | - Meifang Yu
- a School of Electrical and Information Engineering, JiangSu University , Zhenjiang , China
| | - Xianglin Zhu
- a School of Electrical and Information Engineering, JiangSu University , Zhenjiang , China
| | - Zheyu Jiang
- b Wuxi Taihu Water Service Co., Ltd , Wuxi , China
| |
Collapse
|
11
|
Dong Y, Li H, Rong S, Xu H, Guan Y, Zhao L, Chen W, He X, Gao X, Chen R, Li L, Xu Z. Isolation and evaluation of Bacillus amyloliquefaciens Rdx5 as a potential biocontrol agent against Magnaporthe oryzae. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1578692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yilun Dong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Songhao Rong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hong Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ying Guan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lu Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wenqian Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiang He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoling Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Rongjun Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, PR China
| |
Collapse
|
12
|
Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico. World J Microbiol Biotechnol 2018; 35:4. [PMID: 30554397 DOI: 10.1007/s11274-018-2574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
The aim of this research was to study the hydrolytic potential of bacteria isolated from cattle environments of two desert soils in one of the driest and hottest zones in America. A total of 26 points were sampled, 144 strains were isolated, and 50 strains were selected for the characterization of esterase, lipase, protease, and amylase activities and for 16S rRNA identification. Strains of the Bacillus, Pseudomonas, Acinetobacter, Enterobacter, Providencia, Escherichia, and Pantoea genera were identified. Comparisons of the proteolytic activity of the secretome from 14 strains (Bacillus n = 7, Escherichia n = 2; Providencia, Pseudomonas, Enterobacter, Pantoea and Acinetobacter n = 1) were performed. Four strains of Bacillus showed the highest proteolytic activity. These strains were characterized through a comparative analysis of pH and temperature as well as the effects of salt concentration on protease activity. Maximum proteolytic activity occurred in the range of pH 7-9 and temperatures between 50 and 70 °C for B. subtilis WD01, B. tequilensis WS11, B. tequilensis WS13, and B. tequilensis WS14. At a 20% NaCl concentration, the proteolytic activity retained was 71.4%, 65%, and 79.8% for WD01, WS11, and WS13, respectively; the activity of strain WS14 increased with 45% NaCl. Protease production by B. tequilensis WS14 with wheat, fish, and bone flours as low-cost substrates showed no differences between bone and fish flours and showed a decrease in protease production with wheat flour. The proteolytic activity in flour extracts with 20% NaCl was 82%, 75.61% and 38.04% for fish, bone and wheat flours, respectively. Data obtained in this work allow us to propose that strains isolated from environments with extreme conditions have a biotechnological potential.
Collapse
|
13
|
Li H, Guan Y, Dong Y, Zhao L, Rong S, Chen W, Lv M, Xu H, Gao X, Chen R, Li L, Xu Z. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One 2018; 13:e0203505. [PMID: 30379821 PMCID: PMC6209128 DOI: 10.1371/journal.pone.0203505] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 01/03/2023] Open
Abstract
Biological control is a promising measure in the control of plant disease. In the present study, we isolated 13 endophytic strains from Angelica dahurica. Among them, an endophytic strain which was named GYLH001 exhibited remarkable activity against Magnaporthe oryzae. 16S rRNA sequence analysis, biochemical and physiological proved that it is Bacillus tequilensis. The sterilized culture filtrate of GYLH001 can inhibit the growth of M.oryzae, which suggests the presence of secondary metabolites. Proved by experiment, GYLH001 can produce cellulase, protease, gelatinase, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. In addition, the temperature experiment showed that secondary metabolites produced by GYLH001 had good thermal stability. They can remain activity even heated at 100°C for 30 min. They also had good acid-resistance in heavily acidic condition. But under alkaline condition, the antifungal effect decreased significantly. By simulative field tests, the spraying of GYLH001 spore solution could prevent and treat rice blast. Through continuous separation and purification of sterilized culture filtrate and identification by mass spectrometry, the molecular weight of an active substance is 364.26. In the control of rice blast, B. tequilensis GYLH001 has potential as a biological control agent in agriculture.
Collapse
Affiliation(s)
- Hui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ying Guan
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yilun Dong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Lu Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Songhao Rong
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Wenqian Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Miaomiao Lv
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Hong Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rongjun Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- * E-mail: (LL); (ZX)
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- * E-mail: (LL); (ZX)
| |
Collapse
|
14
|
Mokashe N, Chaudhari B, Patil U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 2018; 117:493-522. [DOI: 10.1016/j.ijbiomac.2018.05.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 09/30/2022]
|
15
|
Purification and Characterization of Microbial Protease Produced Extracellularly from Bacillus subtilis FBL-1. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0495-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Sobucki L, Ramos RF, Daroit DJ. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23125-23132. [PMID: 28828755 DOI: 10.1007/s11356-017-9876-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1-100 g l-1), maximal protease production was observed at 30 g l-1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l-1), CaCl2, or MgCl2 (10 mmol l-1) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH4Cl (1 g l-1) resulted in less apparent negative effects on protease production, whereas peptone (2 g l-1) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH4Cl (0.5-4.5 g l-1) on protease production and feather degradation, FB30 supplementation with peptone and NH4Cl (0.5-1.1 g l-1) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.
Collapse
Affiliation(s)
- Lisiane Sobucki
- Laboratório de Microbiologia, Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal 1580, Cerro Largo, RS, 97900-000, Brazil
| | - Rodrigo Ferraz Ramos
- Laboratório de Microbiologia, Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal 1580, Cerro Largo, RS, 97900-000, Brazil
| | - Daniel Joner Daroit
- Laboratório de Microbiologia, Universidade Federal da Fronteira Sul (UFFS) - Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal 1580, Cerro Largo, RS, 97900-000, Brazil.
| |
Collapse
|
17
|
de Oliveira CT, Rieger TJ, Daroit DJ. Catalytic properties and thermal stability of a crude protease from the keratinolytic Bacillus sp. CL33A. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q, Liu Y, Liao H, Tong C, Liu X, Zhu Y. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1149-1157. [PMID: 27293085 DOI: 10.1002/jsfa.7841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Biocontrol is a promising strategy in the control of rice blast disease. In the present study, we isolated and characterized a novel antagonist to the pathogen Magnaporthe oryzae from rice endophytic actinomycetes. RESULTS Out of 482 endophytic actinomycetes isolated from rice blast infected and healthy rice, Streptomyces endus OsiSh-2 exhibited remarkable in vitro antagonistic activity. Scanning electron microscopy observations of M. oryzae treated by OsiSh-2 revealed significant morphological alterations in hyphae. In 2-year field tests, the spraying of OsiSh-2 spore solution (107 spores mL-1 ) is capable of reducing rice blast disease severity by 59.64%. In addition, a fermentation broth of OsiSh-2 and its cell-free filtrates could inhibit the growth of M. oryzae, suggesting the presence of active enzymes and secondary metabolites. OsiSh-2 tested positive for polyketide synthase-I and nonribosomal peptide synthetase genes and can produce cellulase, protease, gelatinase, siderophore, indole-3-acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase. A preliminary separation indicated that the methanol extract of OsiSh-2 could suppress the growth of pathogens. The major active component was identified as nigericin. CONCLUSION Endophytic S. endus OsiSh-2 has potential as a biocontrol agent against rice blast in agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiadong Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaolu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuanzhu Yang
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Shanshan Yuan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xiaochun Hu
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhenzhen Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qian Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yuqing Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Hongdong Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Chunyi Tong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| |
Collapse
|
19
|
Utilisation of Jatropha press cake as substrate in biomass and lipase production from Aspergillus niger 65I6 and Rhizomucor miehei CBS 360.62. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Thakur S, Sharma NK, Thakur N, Savitri, Bhalla TC. Organic solvent tolerant metallo protease of novel isolate Serratia marcescens PPB-26: production and characterization. 3 Biotech 2016; 6:180. [PMID: 28330252 PMCID: PMC4999571 DOI: 10.1007/s13205-016-0500-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/16/2016] [Indexed: 11/03/2022] Open
Abstract
Proteases are a class of enzymes that catalyze hydrolysis of peptide bonds of proteins. In this study, 221 proteolytic bacterial isolates were obtained by enrichment culture method from soils of various regions of Himachal Pradesh, India. From these a hyper producer of protease was screened and identified by morphological and physiological testing and by 16S rDNA sequence as Serratia marcescens PPB-26. Statistical optimization of physiochemical parameters enhanced the protease production by 75 %. Protease of S. marcescens PPB-26 was classified as a metalloprotease. It showed optimal activity at 30 °C, pH 7.5 (0.15 M Tris-HCl buffer) and with 0.8 % substrate concentration. It had K m = 0.3 %, V max = 34.5 μmol min-1 mg-1 protein and a half life of 2 days at 30 °C. The enzyme was stable in most metal ions but showed increased activity with Fe2+ and Cu2+ while strong inhibition with Co2+ and Zn2+. Further investigation showed that the enzyme could not only retain its activity in various organic solvents but also showed increased activity with methanol and ethanol. The reported metalloprotease is thus a potential candidate for carrying out industrial peptide synthesis.
Collapse
Affiliation(s)
- Shikha Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Nirmal Kant Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Savitri
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India.
| |
Collapse
|
21
|
Patil U, Mokashe N, Chaudhari A. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization. Prep Biochem Biotechnol 2016; 46:56-64. [PMID: 25356983 DOI: 10.1080/10826068.2014.979205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.
Collapse
Affiliation(s)
- Ulhas Patil
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Narendra Mokashe
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Ambalal Chaudhari
- b School of Life Sciences , North Maharashtra University , Jalgaon , India
| |
Collapse
|
22
|
Ghafoori H, Askari M, Sarikhan S. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B). Extremophiles 2016; 20:115-23. [PMID: 26696418 DOI: 10.1007/s00792-015-0804-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/06/2015] [Indexed: 10/22/2022]
Abstract
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.
Collapse
Affiliation(s)
| | | | - Sajjad Sarikhan
- Molecular bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|