1
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Enhancing Pisum sativum growth and symbiosis under heat stress: the synergistic impact of co-inoculated bacterial consortia and ACC deaminase-lacking Rhizobium. Arch Microbiol 2024; 206:203. [PMID: 38573536 PMCID: PMC10995081 DOI: 10.1007/s00203-024-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal.
| |
Collapse
|
3
|
Mahdhi A, Mars M, Rejili M. Members of Ensifer and Rhizobium genera are new bacterial endosymbionts nodulating Pisum sativum (L.). FEMS Microbiol Ecol 2023; 99:fiad001. [PMID: 36597782 DOI: 10.1093/femsec/fiad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
A total of 84 Pisum sativum legume nodulating bacteria (LNB) were isolated from seven geographical sites from southern Tunisia. Phylogenetic analyses based on partial sequences of 16S rRNA gene and the housekeeping genes glnII, and recA grouped strains into six clusters, four of which belonged to the genus Rhizobium and two to the Ensifer genus. Among Rhizobium clusters, 41 strains were affiliated to Rhizobium leguminosarum, two strains to R. pisi, two strains to R. etli, and interestingly two strains belonged to previously undescribed Rhizobium species. The remaining two strains were closely related to Ensifer medicae (two strains) and Ensifer meliloti (two strains). A symbiotic nodC gene-based phylogeny and host specificity test showed that all Rhizobium strains nodulating pea belonged to the symbiovar viciae, whereas the Ensifer strains were associated with the symbiovar meliloti never described to date. All strains under investigation differed in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The R. leguminosarum PsZA23, R. leguminosarum PsGBL42, and E. medicae PsTA22a, forming the most effective symbiosis with the plant host, are potential candidates for inoculation programs.
Collapse
Affiliation(s)
- A Mahdhi
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
4
|
Ashilenje DS, Amombo E, Hirich A, Kouisni L, Devkota KP, El Mouttaqi A, Nilahyane A. Crop Species Mechanisms and Ecosystem Services for Sustainable Forage Cropping Systems in Salt-Affected Arid Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:899926. [PMID: 35685006 PMCID: PMC9171386 DOI: 10.3389/fpls.2022.899926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity limits crop productivity in arid regions and it can be alleviated by crop synergies. A multivariate analysis of published data (n = 78) from arid and semiarid habitats across continents was conducted to determine the crop species mechanisms of salinity tolerance and synergies relevant for designing adapted forage cropping systems. Halophyte [Cynodon plectostachus (K. Schum.) Pilg.] and non-halophyte grasses (Lolium perenne L. and Panicum maximum Jacq.) clustered along increasing soil salinity. Halophytic grasses [Panicum antidotale Retz. and Dicanthum annulatum (Forssk.) Stapf] congregated with Medicago sativa L., a non-halophytic legume along a gradient of increasing photosynthesis. Halophytic grasses [Sporobolus spicatus (Vahl) Kunth, and Cynodon plectostachyus (K. Schum.) Pilg.] had strong yield-salinity correlations. Medicago sativa L. and Leptochloa fusca L. Kunth were ubiquitous in their forage biomass production along a continuum of medium to high salinity. Forage crude protein was strongly correlated with increasing salinity in halophytic grasses and non-halophytic legumes. Halophytes were identified with mechanisms to neutralize the soil sodium accumulation and forage productivity along an increasing salinity. Overall, halophytes-non-halophytes, grass-forbs, annual-perennials, and plant-bacteria-fungi synergies were identified which can potentially form cropping systems that can ameliorate saline soils and sustain forage productivity in salt-affected arid regions.
Collapse
|
5
|
Rejili M, BenAbderrahim MA, Mars M, Sherrier JD. Novel putative rhizobial species with different symbiovars nodulate Lotus creticus and their differential preference to distinctive soil properties. FEMS Microbiol Lett 2020; 367:5838745. [DOI: 10.1093/femsle/fnaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/17/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Phylogenetically diverse rhizobial strains endemic to Tunisia were isolated from symbiotic nodules of Lotus creticus, growing in different arid extremophile geographical regions of Tunisia, and speciated using multiloci-phylogenetic analysis as Neorhizobium huautlense (LCK33, LCK35, LCO42 and LCO49), Ensifer numidicus (LCD22, LCD25, LCK22 and LCK25), Ensifer meliloti (LCK8, LCK9 and LCK12) and Mesorhizobium camelthorni (LCD11, LCD13, LCD31 and LCD33). In addition, phylogenetic analyses revealed eight additional strains with previously undescribed chromosomal lineages within the genera Ensifer (LCF5, LCF6 and LCF8),Rhizobium (LCF11, LCF12 and LCF14) and Mesorhizobium (LCF16 and LCF19). Analysis using the nodC gene identified five symbiovar groups, four of which were already known. The remaining group composed of two strains (LCD11 and LCD33) represented a new symbiovar of Mesorhizobium camelthorni, which we propose designating as sv. hedysari. Interestingly, we report that soil properties drive and structure the symbiosis of L. creticus and its rhizobia.
Collapse
Affiliation(s)
- Mokhtar Rejili
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Mohamed Ali BenAbderrahim
- Laboratoire d'Aridocultures et des Cultures Oasiennes, Institut des Régions Arides, 6051 Gabès, Tunisia
| | - Mohamed Mars
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Janine Darla Sherrier
- Department of Crop & Soil Sciences, University of Georgia, 3111 Miller Plant Sci, 120 Carlton St., Athens, GA 30602, USA
| |
Collapse
|
6
|
Mahdhi M, Houidheg N, Mahmoudi N, Msaadek A, Rejili M, Mars M. Characterization of Rhizobial Bacteria Nodulating Astragalus corrugatus and Hippocrepis areolata in Tunisian Arid Soils. Pol J Microbiol 2018; 65:331-339. [PMID: 29334057 DOI: 10.5604/17331331.1215612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fifty seven bacterial isolates from root nodules of two spontaneous legumes (Astragalus corrugatus and Hippocrepis areolata) growing in the arid areas of Tunisia were characterized by phenotypic features, 16S rDNA PCR-RFLP and 16S rRNA gene sequencing. Phenotypically, our results indicate that A. corrugatus and H. areolata isolates showed heterogenic responses to the different phenotypic features. All isolates were acid producers, fast growers and all of them used different compounds as sole carbon and nitrogen source. The majority of isolate grew at pHs between 6 and 9, at temperatures up to 40°C and tolerated 3% NaCl concentrations. Phylogenetically, the new isolates were affiliated to four genera Sinorhizobium, Rhizobium, Mesorhizobium and Agrobacterium. About 73% of the isolates were species within the genera Sinorhizobium and Rhizobium. The isolates which failed to nodulate their host plants of origin were associated to Agrobacterium genus (three isolates).
Collapse
Affiliation(s)
- Mosbah Mahdhi
- Center for Environmental Research and Studies, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Nadia Houidheg
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Neji Mahmoudi
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Abdelhakim Msaadek
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Mokhtar Rejili
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| | - Mohamed Mars
- Research Unit Biodiversity and Valorization of Arid Areas, Bioressources (BVBAA), Faculty of Sciences, Gabès University, Erriadh-Zrig, Gabès, Tunisia
| |
Collapse
|
7
|
Sami D, Mokhtar R, Peter M, Mohamed M. Rhizobium leguminosarum symbiovar trifolii, Ensifer numidicus and Mesorhizobium amorphae symbiovar ciceri (or Mesorhizobium loti) are new endosymbiotic bacteria of Lens culinaris Medik. FEMS Microbiol Ecol 2016; 92:fiw118. [PMID: 27267929 DOI: 10.1093/femsec/fiw118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 11/13/2022] Open
Abstract
A total of 142 rhizobial bacteria were isolated from root nodules of Lens culinaris Medik endemic to Tunisia and they belonged to the species Rhizobium leguminosarum, and for the first time to Ensifer and Mesorhizobium, genera never previously described as microsymbionts of lentil. Phenotypically, our results indicate that L. culinaris Medik strains showed heterogenic responses to the different phenotypic features and they effectively nodulated their original host. Based on the concatenation of the 16S rRNA with relevant housekeeping genes (glnA, recA, dnaK), rhizobia that nodulate lentil belonged almost exclusively to the known R. leguminosarum sv. viciae. Interestingly, R. leguminosarum sv. trifolii, Ensifer numidicus (10 isolates) and Mesorhizobium amorphae (or M. loti) (9 isolates) isolates species, not considered, up to now, as a natural symbiont of lentil are reported. The E. numidicus and M. amorphae (or M. loti) strains induced fixing nodules on Medicago sativa and Cicer arietinum host plants, respectively. Symbiotic gene phylogenies showed that the E. numidicus, new symbiont of lentil, markedly diverged from strains of R. leguminosarum, the usual symbionts of lentil, and converged to the symbiovar meliloti so far described within E. meliloti Indeed, the nodC and nodA genes from the M. amorphae showed more than 99% similarity with respect to those from M. mediterraneum, the common chickpea nodulating species, and would be included in the new infrasubspecific division named M. amorphae symbiovar ciceri, or to M. loti, related to the strains able to effectively nodulate C. arietinum host plant. On the basis of these data, R. leguminosarum sv. trifolii (type strain LBg3 (T)), M. loti or M. amorphae sv. ciceri (type strain LB4 (T)) and E. numidicus (type strain LBi2 (T)) are proposed as new symbionts of L. culinaris Medik.
Collapse
Affiliation(s)
- Dhaoui Sami
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| | - Rejili Mokhtar
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| | - Mergaert Peter
- Institute for IntegrativeBiology of the Cell, Centre National de la Recherche Scientifique, Avenue de la Terrasse Bât. 34, 91198 Gif-sur-Yvette, France
| | - Mars Mohamed
- Research Unit Biodiversity & Valorization of Arid Areas Bioressources, Faculty of Sciences of Gabès, Erriadh-Zrig, Gabes 6072, Tunisia
| |
Collapse
|
8
|
Bhargava Y, Murthy JSR, Kumar TVR, Rao MN. Phenotypic, Stress Tolerance and Plant Growth Promoting Characteristics of Rhizobial Isolates from Selected Wild Legumes of Semiarid Region, Tirupati, India. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.61001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Phenotypic and genotypic characterization of root nodules rhizobia of Medicago littoralis Rhode and Melilotus indicus (L.) All. growing in the Oasis of Touggourt, Oued Righ Valley, in the Algerian Sahara. Symbiosis 2015. [DOI: 10.1007/s13199-015-0336-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|