1
|
Belabess Z, Sagouti T, Rhallabi N, Tahiri A, Massart S, Tahzima R, Lahlali R, Jijakli MH. Citrus Psorosis Virus: Current Insights on a Still Poorly Understood Ophiovirus. Microorganisms 2020; 8:microorganisms8081197. [PMID: 32781662 PMCID: PMC7465697 DOI: 10.3390/microorganisms8081197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Citrus psorosis was reported for the first time in Florida in 1896 and was confirmed as a graft-transmissible disease in 1934. Citrus psorosis virus (CPsV) is the presumed causal agent of this disease. It is considered as a type species of the genus Ophiovirus, within the family Aspiviridae. CPsV genome is a negative single-stranded RNA (-ssRNA) with three segments. It has a coat protein (CP) of 48 kDa and its particles are non-enveloped with naked filamentous nucleocapsids existing as either circular open structures or collapsed pseudo-linear forms. Numerous rapid and sensitive immuno-enzymatic and molecular-based detection methods specific to CPsV are available. CPsV occurrence in key citrus growing regions across the world has been spurred the establishment of the earliest eradication and virus-free budwood programs. Despite these efforts, CPsV remains a common and serious challenge in several countries and causes a range of symptoms depending on the isolate, the cultivar, and the environment. CPsV can be transmitted mechanically to some herbaceous hosts and back to citrus. Although CPsV was confirmed to be seedborne, the seed transmission is not efficient. CPsV natural spread has been increasing based on both CPsV surveys detection and specific CPsV symptoms monitoring. However, trials to ensure its transmission by a soil-inhabiting fungus and one aphid species have been unsuccessful. Psorosis disease control is achieved using CPsV-free buds for new plantations, launching budwood certification and indexing programs, and establishing a quarantine system for the introduction of new varieties. The use of natural resistance to control CPsV is very challenging. Transgenic resistance to at least some CPsV isolates is now possible in at least some sweet orange varieties and constitutes a promising biotechnological alternative to control CPsV. This paper provides an overview of the most remarkable achievements in CPsV research that could improve the understanding of the disease and lead the development of better control strategies.
Collapse
Affiliation(s)
- Zineb Belabess
- Plant Protection Laboratory. INRA, Centre Régional de la Recherche Agronomique (CRRA), Oujda 60000, Qualipole de Berkane, 63300 Berkane, Morocco;
| | - Tourya Sagouti
- Faculté des Sciences et Techniques de Mohammedia, Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, 20650 Mohammedia, Morocco; (T.S.); (N.R.)
| | - Naima Rhallabi
- Faculté des Sciences et Techniques de Mohammedia, Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, 20650 Mohammedia, Morocco; (T.S.); (N.R.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, 50001 Meknes, Morocco;
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| | - Rachid Tahzima
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, 50001 Meknes, Morocco;
- Correspondence: ; Tel.: +212-55-30-02-39
| | - M. Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro BioTech, University of Liege, 25030 Gembloux, Belgium; (S.M.); (R.T.); (M.H.J.)
| |
Collapse
|