1
|
De Luca D, Piredda R, Scamardella S, Martelli Castaldi M, Troisi J, Lombardi M, De Castro O, Cennamo P. Taxonomic and metabolic characterisation of biofilms colonising Roman stuccoes at Baia's thermal baths and restoration strategies. Sci Rep 2024; 14:26290. [PMID: 39487240 PMCID: PMC11530618 DOI: 10.1038/s41598-024-76637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Stuccoes are very delicate decorative elements of Roman age. Very few of them survived almost intact to present days and, for this reason, they are of great interest to restorers and conservators. In this study, we combined metabarcoding and untargeted metabolomics to characterise the taxonomic and metabolic profiles of the microorganisms forming biofilms on the stuccoes located on the ceiling of the laconicum, a small thermal environment in the archaeological park of Baia (southern Italy). We found that some samples were dominated by bacteria while others by eukaryotes. Additionally, we observed high heterogeneity in the type and abundance of bacterial taxa, while the eukaryotic communities, except in one sample (at prevalence of fungi), were dominated by green algae. The metabolic profiles were comparable across samples, with lipids, lipid-like molecules and carbohydrates accounting for roughly the 50% of metabolites. In vitro and in vivo tests to remove biofilms on stuccoes using essential oils blends were successful at a 50% dilution for one hour and half. This integrative study advanced our knowledge on taxonomic and metabolic profiles of biofilms on ancient stuccoes and highlighted the potential impacts of these techniques in the field of cultural heritage conservation.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy.
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Sara Scamardella
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | | | - Jacopo Troisi
- Theoreo srl, Montecorvino Pugliano, SA, Italy
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Martina Lombardi
- Theoreo srl, Montecorvino Pugliano, SA, Italy
- European Institute of Metabolomics Foundation, Baronissi, SA, Italy
| | - Olga De Castro
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden, University of Naples Federico II, Naples, Italy
| | - Paola Cennamo
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy.
| |
Collapse
|
2
|
Navarrete-Bolaños JL, Serrato-Joya O. A novel strategy to construct multi-strain starter cultures: an insight to evolve from natural to directed fermentation. Prep Biochem Biotechnol 2023; 53:1199-1209. [PMID: 36799653 DOI: 10.1080/10826068.2023.2177870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Some biotechnological strategies have succeeded in the attempt to imitate natural fermentation, and bioprocesses have been efficiently designed when the product is the result of a unique biological reaction. However, when the process requires more than one biological reaction, few bioprocesses have been successfully designed because the available tools to construct multi-strain starter cultures are not yet well defined. In this work, a novel experimental strategy to construct multi-strain starter cultures with selected native microorganisms from natural fermentation is proposed. The strategy analyses, selects, and defines the number and proportion of each strain that should form a starter culture to be used in directed fermentations. It was applied to evolve natural fermentation to directed fermentation in distilled agave production. The results showed that a starter culture integrated by Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum in proportions of 35, 32, and 33%, respectively, allows obtaining fermented agave juice containing a 2.1% alcohol yield and a distilled product with a broad profile of aromatic compounds. Hence, the results show, for the first time, a tool that addresses the technical challenge for multi-strain starter culture construction, offering the possibility of preserving the typicity and genuineness of the original traditional product.
Collapse
Affiliation(s)
- J L Navarrete-Bolaños
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| | - O Serrato-Joya
- Biochemistry and Engineering Sciences Department, Tecnológico Nacional de México en Celaya, México
| |
Collapse
|
3
|
Bacterial Communities Related to Aroma Formation during Spontaneous Fermentation of ‘Cabernet Sauvignon’ Wine in Ningxia, China. Foods 2022; 11:foods11182775. [PMID: 36140903 PMCID: PMC9497756 DOI: 10.3390/foods11182775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteria are an important part of wine ‘microbial terroir’ and contribute to the formation of wine flavor. Based on high-throughput sequencing and non-targeted metabonomic technology, this study first explored the bacterial composition and its effect on the aroma formation of spontaneously fermented ‘Cabernet Sauvignon’ (CS) wine in the Eastern Foot of Helan Mountain (EFHM), Ningxia. The results showed that there were significant differences in bacterial communities during fermentation of CS grapes harvested from different sub-regions of EFHM, with the earlier-established vineyard obtaining more species. The level of bacterial diversity initially decreased and then increased as the fermentation proceeded. Malolactic fermentation (MLF) was spontaneously initiated during alcohol fermentation (AF). Pantoea, Lactobacillus, Rhodococcus, Fructobacillus, and Komagataeibacter were the core bacterial genera in the fermentation mixture. Lactobacillus contributed to the synthesis of methyl and isobutyl esters and the formation of red and black fruity fragrances of wine. Fructobacillus was closely related to the synthesis of aromatic alcohols and the generation of floral flavors.
Collapse
|
4
|
Maluleke E, Jolly NP, Patterton HG, Setati ME. Antifungal activity of non-conventional yeasts against Botrytis cinerea and non-Botrytis grape bunch rot fungi. Front Microbiol 2022; 13:986229. [PMID: 36081805 PMCID: PMC9445577 DOI: 10.3389/fmicb.2022.986229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Grapes harbour a plethora of non-conventional yeast species. Over the past two decades, several of the species have been extensively characterised and their contribution to wine quality is better understood. Beyond fermentation, some of the species have been investigated for their potential as alternative biological tools to reduce grape and wine spoilage. However, such studies remain limited to a few genera. This work aimed to evaluate the antagonistic activity of grape must-derived non-conventional yeasts against Botrytis cinerea and non-Botrytis bunch-rotting moulds and to further elucidate mechanisms conferring antifungal activity. A total of 31 yeast strains representing 21 species were screened on different agar media using a dual culture technique and liquid mixed cultures, respectively. Pichia kudriavzevii was the most potent with a minimum inhibitory concentration of 102 cells/mL against B. cinerea but it had a narrow activity spectrum. Twelve of the yeast strains displayed broad antagonistic activity, inhibiting three strains of B. cinerea (B05. 10, IWBT FF1 and IWBT FF2), a strain of Aspergillus niger and Alternaria alternata. Production of chitinases and glucanases in the presence of B. cinerea was a common feature in most of the antagonists. Volatile and non-volatile compounds produced by antagonistic yeast strains in the presence of B. cinerea were analysed and identified using gas and liquid chromatography mass spectrometry, respectively. The volatile compounds identified belonged mainly to higher alcohols, esters, organosulfur compounds and monoterpenes while the non-volatile compounds were cyclic peptides and diketopiperazine. To our knowledge, this is the first report to demonstrate inhibitory effect of the non-volatile compounds produced by various yeast species.
Collapse
Affiliation(s)
- Evelyn Maluleke
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, South Africa
| | - Neil Paul Jolly
- Post Harvest and Agro-Processing Technologies, ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Stellenbosch, South Africa
| | - Hugh George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Matieland, South Africa
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, South Africa
- *Correspondence: Mathabatha Evodia Setati,
| |
Collapse
|
5
|
Rivas GA, Valdés La Hens D, Delfederico L, Olguin N, Bravo-Ferrada BM, Tymczyszyn EE, Semorile L, Brizuela NS. Molecular tools for the analysis of the microbiota involved in malolactic fermentation: from microbial diversity to selection of lactic acid bacteria of enological interest. World J Microbiol Biotechnol 2022; 38:19. [PMID: 34989896 DOI: 10.1007/s11274-021-03205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Winemaking is a complex process involving two successive fermentations: alcoholic fermentation, by yeasts, and malolactic fermentation (MLF), by lactic acid bacteria (LAB). During MLF, LAB can contribute positively to wine flavor through decarboxylation of malic acid with acidity reduction and other numerous enzymatic reactions. However, some microorganisms can have a negative impact on the quality of the wine through processes such as biogenic amine production. For these reasons, monitoring the bacterial community profiles during MLF can predict and control the quality of the final product. In addition, the selection of LAB from a wine-producing area is necessary for the formulation of native malolactic starter cultures well adapted to local winemaking practices and able to enhance the regional wine typicality. In this sense, molecular biology techniques are fundamental tools to decipher the native microbiome involved in MLF and to select bacterial strains with potential to function as starter cultures, given their enological and technological characteristics. In this context, this work reviews the different molecular tools (both culture-dependent and -independent) that can be applied to the study of MLF, either in bacterial isolates or in the microbial community of wine, and of its dynamics during the process.
Collapse
Affiliation(s)
- Gabriel Alejandro Rivas
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Danay Valdés La Hens
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Lucrecia Delfederico
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Nair Olguin
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Bárbara Mercedes Bravo-Ferrada
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Emma Elizabeth Tymczyszyn
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Liliana Semorile
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Natalia Soledad Brizuela
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Qiu X, Yu L, Wang W, Yan R, Zhang Z, Yang H, Zhu D, Zhu B. Comparative Evaluation of Microbiota Dynamics and Metabolites Correlation Between Spontaneous and Inoculated Fermentations of Nanfeng Tangerine Wine. Front Microbiol 2021; 12:649978. [PMID: 34046021 PMCID: PMC8144288 DOI: 10.3389/fmicb.2021.649978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the evolution of microorganisms and metabolites during wine fermentation is essential for controlling its production. The structural composition and functional capacity of the core microbiota determine the quality and quantity of fruit wine. Nanfeng tangerine wine fermentation involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this product fermentation remain unclear. Therefore, high-throughput sequencing (HTS) and headspace-gas chromatography-mass spectrometry (HS/GC-MS) were employed to reveal the core functional microbiota for the production of volatile flavors during spontaneous fermentation (SF) and inoculated fermentation (IF) with Saccharomyces cerevisiae of Nanfeng tangerine wine. A total of 13 bacterial and 8 fungal genera were identified as the core microbiota; Lactobacillus and Acetobacter were the dominant bacteria in SF and IF, respectively. The main fungal genera in SF and IF were Hanseniaspora, Pichia, and Saccharomyces with a clear succession. In addition, the potential correlations analysis between microbiota succession and volatile flavor dynamics revealed that Lactobacillus, Acetobacter, Hanseniaspora, and Saccharomyces were the major contributors to the production of the volatile flavor of Nanfeng tangerine wine. The results of the present study provide insight into the effects of the core functional microbiota in Nanfeng tangerine wine and can be used to develop effective strategies for improving the quality of fruit wines.
Collapse
Affiliation(s)
- Xiangyu Qiu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Linlin Yu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
7
|
Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria. Curr Microbiol 2021; 78:2660-2671. [PMID: 34002268 DOI: 10.1007/s00284-021-02528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The current study aimed on isolating thermotolerant, cellulolytic fungi from different tropical soil/waste materials samples such as wood waste, sawmill, decomposing straw and compost pit sites in Abraka, Southern Nigeria and assessing their applications in diverse cellulolytic processes. Fungal isolates were identified based on cultural, morphological, ITS-5.8S barcoding, reproductive structures and thereafter screened for thermotolerance and cellulolytic activities [carboxy methyl cellulase (CMC-ase) and filter paperase (FP-ase)] by cultivating at 45, 50, 60, 70, 80° and 45 °C, respectively. The highest fungal abundance (44.4%) was observed in the compost pit while the lowest (11.1%) was recorded for sawmill. Nine thermotolerant fungal isolates were identified: Aspergillus flavus (4), Blakeslea sp. (3), and Trichoderma asperellum (2). Among them only five, including three A. flavus, one Blakeslea sp. and one T. asperellum, exhibited cellulolytic activity ranging from 12.11 ± 0.01 to 18.42 ± 5.39 µg/mL and 0.36 ± 0.01-9.21 ± 2.52 µg/mL for CMC-ase and filter paperase FP-ase assay, respectively. The low Michaelis-Menten constants of 1.137 for CMC-ase and 1.195 for FP-ase were obtained, indicated a strong affinity for the substrate. The thermotolerance coupled with cellulolytic activity of these isolates make them attractive for potential application in industries where they can be of economic and environmental benefits as against the use of chemicals.
Collapse
|
8
|
Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale. Appl Environ Microbiol 2021; 87:AEM.00036-21. [PMID: 33741633 PMCID: PMC8208162 DOI: 10.1128/aem.00036-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions. IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
Collapse
|
9
|
Reiter T, Montpetit R, Byer S, Frias I, Leon E, Viano R, Mcloughlin M, Halligan T, Hernandez D, Figueroa-Balderas R, Cantu D, Steenwerth K, Runnebaum R, Montpetit B. Transcriptomics Provides a Genetic Signature of Vineyard Site and Offers Insight into Vintage-Independent Inoculated Fermentation Outcomes. mSystems 2021; 6:e00033-21. [PMID: 33850038 PMCID: PMC8546962 DOI: 10.1128/msystems.00033-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.
Collapse
Affiliation(s)
- Taylor Reiter
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Population Health and Reproduction, University of California, Davis, California, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Shelby Byer
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Isadora Frias
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Esmeralda Leon
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Robert Viano
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Michael Mcloughlin
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Thomas Halligan
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Desmon Hernandez
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Kerri Steenwerth
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, California, USA
| | - Ron Runnebaum
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Ben Montpetit
- Food Science Graduate Group, University of California Davis, Davis, California, USA
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| |
Collapse
|
10
|
Bagheri B, Bauer FF, Cardinali G, Setati ME. Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation. Sci Rep 2020; 10:4911. [PMID: 32188881 PMCID: PMC7080794 DOI: 10.1038/s41598-020-61690-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/26/2020] [Indexed: 12/03/2022] Open
Abstract
Spontaneous wine fermentation is characterized by yeast population evolution, modulated by complex physical and metabolic interactions amongst various species. The contribution of any given species to the final wine character and aroma will depend on its numerical persistence during the fermentation process. Studies have primarily evaluated the effect of physical and chemical factors such as osmotic pressure, pH, temperature and nutrient availability on mono- or mixed-cultures comprising 2-3 species, but information about how interspecies ecological interactions in the wine fermentation ecosystem contribute to population dynamics remains scant. Therefore, in the current study, the effect of temperature and sulphur dioxide (SO2) on the dynamics of a multi-species yeast consortium was evaluated in three different matrices including synthetic grape juice, Chenin blanc and Grechetto bianco. The population dynamics were affected by temperature and SO2, reflecting differences in stress resistance and habitat preferences of the different species and influencing the production of most volatile aroma compounds. Evidently at 15 °C and in the absence of SO2 non-Saccharomyces species were dominant, whereas at 25 °C and when 30 mg/L SO2 was added S. cerevisiae dominated. Population growth followed similar patterns in the three matrices independently of the conditions. The data show that fermentation stresses lead to an individual response of each species, but that this response is strongly influenced by the interactions between species within the ecosystem. Thus, our data suggest that ecological interactions, and not only physico-chemical conditions, are a dominant factor in determining the contribution of individual species to the outcome of the fermentation.
Collapse
Affiliation(s)
- Bahareh Bagheri
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa
| | - Gianluigi Cardinali
- Section of Applied Microbiology - Department of Plant Biology and Agri-Environmental Biotechnology - University of Perugia Borgo, Perugia, Italy
| | - Mathabatha Evodia Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa.
| |
Collapse
|
11
|
Huang J. Application of Agaricus bisporus industrial wastewater to produce the biomass of Pichia burtonii. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2271-2278. [PMID: 31411581 DOI: 10.2166/wst.2019.228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By using Plackett-Burman combined with Box-Behnken design, the fermentation conditions of Pichia burtonii using Agaricus bisporus industrial wastewater as culture medium were optimized. The biomass of P. burtonii in the fermentation broth was analyzed by multispectral imaging flow cytometry. Plackett-Burman design was used to screen out three factors from six factors affecting the biomass of P. burtonii as major factors. The Box-Behnken response surface method was used to optimize the interaction of the three main factors to predict the optimal fermentation conditions. The significant factors affecting the biomass of P. burtonii, such as shaking speed, solubility and culture temperature, were screened. The optimum conditions for P. burtonii were as follows: a shaking speed of 265 rmp, a solubility of 8%, a culture temperature of 25 °C, an initial pH of 6.0, an inoculation amount of 8%, and an amount of 30 mL liquid in 250 mL, and the total living yeast can reach 1.27 ± 0.02 × 108 Obj/mL, which was within the 95% confidence interval of the predicted model (1.08-1.32 × 108 Obj/mL).
Collapse
Affiliation(s)
- Jiafu Huang
- Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China and School of Life Sciences & Biotechnology College, Minnan Normal University, Zhangzhou, Fujian 363000, China E-mail:
| |
Collapse
|
12
|
The Influence of Fungicide Treatments on Mycobiota of Grapes and Its Evolution during Fermentation Evaluated by Metagenomic and Culture-Dependent Methods. Microorganisms 2019; 7:microorganisms7050114. [PMID: 31035521 PMCID: PMC6560393 DOI: 10.3390/microorganisms7050114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
The present study evaluated the impact of organic and conventional fungicide treatments compared with untreated samples (no fungicides were used) on the grape berry yeast community of the Montepulciano variety. The yeast dynamics during the spontaneous fermentation using culture-dependent and -independent methods was also evaluated. Results showed a reduction of yeast biodiversity by conventional treatments determining a negative influence on fermenting yeasts in favor of oxidative yeasts such as Aerobasidium pullulans. Starmerella bacillaris was significantly more present in organic samples (detected by next generation sequencing (NGS)), while Hanseniaspopa uvarum was significantly less present in untreated samples (detected by the culture-dependent method). The fermenting yeasts, developed during the spontaneous fermentation, were differently present depending on the fungicide treatments used. Culture-dependent and -independent methods exhibited the same most abundant yeast species during the spontaneous fermentation but a different relative abundance. Differently, the NGS method was able to detect a greater biodiversity (lower abundant species) in comparison with the culture-dependent method. In this regard, the methodologies used gave a different picture of yeast dynamics during the fermentation process. The results indicated that the fungal treatments can influence the yeast community of grapes leading must fermentation and the final composition of wine.
Collapse
|
13
|
Naidoo RK, Simpson ZF, Oosthuizen JR, Bauer FF. Nutrient Exchange of Carbon and Nitrogen Promotes the Formation of Stable Mutualisms Between Chlorella sorokiniana and Saccharomyces cerevisiae Under Engineered Synthetic Growth Conditions. Front Microbiol 2019; 10:609. [PMID: 30972051 PMCID: PMC6443722 DOI: 10.3389/fmicb.2019.00609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/11/2019] [Indexed: 11/26/2022] Open
Abstract
Microbial biotechnological processes can be based on single species pure cultures or on multi-species assemblages. While these assemblages can be advantageous by offering more functionalities and more resilience to changing environmental conditions, they can be unpredictable and difficult to control under synthetically engineered growth conditions. To overcome the unpredictable nature of these microbial assemblages, the generation of stable mutualistic systems through synthetic ecology approaches may provide novel solutions for understanding microbial interactions in these environments. Here we establish a stable association between two evolutionarily unrelated, but biotechnologically complementary species isolated from winery wastewater; a strain of the yeast Saccharomyces cerevisiae and microalga, Chlorella sorokiniana. Yeast and microalgae were able to form obligate (interdependent) and non-obligate (facultative) mutualisms under engineered batch co-culture growth conditions. Obligate mutualism was maintained through the reciprocal exchange of carbon and nitrogen where the yeast ferments mannose to produce carbon dioxide for use by the microalga; and the microalga provides the yeast with nitrogen by metabolizing nitrite to ammonium. The effect of temperature and pH on the establishment of these mutualisms was evaluated and pH was found to be a key determinant for mutualism formation under obligatory conditions. Moreover, the combinations of the two species under non-obligatory growth conditions led to improvement in growth rate and biomass production when compared to single species cultures grown under the same conditions. Such engineered mutualisms are the first step in developing stable multi-species assemblages, while providing a system to generate novel insight into the evolution of mutualistic interactions between phylogenetically distant microorganisms.
Collapse
Affiliation(s)
| | | | | | - Florian F. Bauer
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chem 2019; 283:499-507. [PMID: 30722904 DOI: 10.1016/j.foodchem.2019.01.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Sangiovese red wines produced from organic (ORG) and biodynamic (BDN) vineyards over two consecutive vintages (2011 and 2012) were compared for chemical and sensory parameters to investigate a sustainable approach to grape production. The effects of management practice, vintage, and their interaction were investigated. The ORG wines showed higher total acidity and lower volatile acidity and pH. Although trained panelists highlighted some differences in astringency and odor complexity between ORG and BDN wines, consumers had no preference. The concentrations of anthocyanins, phenolic and cinnamic acids, and flavonols, as well as colour components, did not differ-contrary to results from the conversion period from ORG to BDN (2009 and 2010) in the same vineyard (Parpinello, Rombolà, Simoni, & Versari, 2015). Together, these two studies demonstrate that ORG and BDN wine characteristics tend to be similar after the first year of conversion, indicating that the BDN method can produce high-quality Sangiovese wine.
Collapse
|
15
|
Abstract
Physical contact between yeast species, in addition to better-understood and reported metabolic interactions, has recently been proposed to significantly impact the relative fitness of these species in cocultures. Such data have been generated by using membrane bioreactors, which physically separate two yeast species. However, doubts persist about the degree that the various membrane systems allow for continuous and complete metabolic contact, including the exchange of proteins. Here, we provide independent evidence for the importance of physical contact by using a genetic system to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Such adhesion is controlled by a family of structurally related cell wall proteins encoded by the FLO gene family. As previously shown, the expression of specific members of the FLO gene family in Saccharomyces cerevisiae dramatically changes the coadhesion patterns between this yeast and other yeast species. Here, we use this differential aggregation mediated by FLO genes as a model to assess the impact of physical contact between different yeast species on the relative fitness of these species in simplified ecosystems. The identity of the FLO gene has a marked effect on the persistence of specific non-Saccharomyces yeasts over the course of extended growth periods in batch cultures. Remarkably, FLO1 and FLO5 expression often result in opposite outcomes. The data provide clear evidence for the role of physical contact in multispecies yeast ecosystems and suggest that FLO gene expression may be a major factor in such interactions.IMPORTANCE The impact of direct (physical) versus indirect (metabolic) interactions between different yeast species has attracted significant research interest in recent years. This is due to the growing interest in the use of multispecies consortia in bioprocesses of industrial relevance and the relevance of interspecies interactions in establishing stable synthetic ecosystems. Compartment bioreactors have traditionally been used in this regard but suffer from numerous limitations. Here, we provide independent evidence for the importance of physical contact by using a genetic system, based on the FLO gene family, to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Our results show that interspecies contact significantly impacts population dynamics and the survival of individual species. Remarkably, different members of the FLO gene family often lead to very different population outcomes, further suggesting that FLO gene expression may be a major factor in such interactions.
Collapse
|
16
|
Bagheri B, Bauer FF, Setati ME. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations. Front Microbiol 2017; 8:1988. [PMID: 29085347 PMCID: PMC5650610 DOI: 10.3389/fmicb.2017.01988] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022] Open
Abstract
Natural, also referred to as spontaneous wine fermentations, are carried out by the native microbiota of the grape juice, without inoculation of selected, industrially produced yeast or bacterial strains. Such fermentations are commonly initiated by non-Saccharomyces yeast species that numerically dominate the must. Community composition and numerical dominance of species vary significantly between individual musts, but Saccharomyces cerevisiae will in most cases dominate the late stages of the fermentation and complete the process. Nevertheless, non-Saccharomyces species contribute significantly, positively or negatively, to the character and quality of the final product. The contribution is species and strain dependent and will depend on each species or strain's absolute and relative contribution to total metabolically active biomass, and will therefore, be a function of its relative fitness within the microbial ecosystem. However, the population dynamics of multispecies fermentations are not well understood. Consequently, the oenological potential of the microbiome in any given grape must, can currently not be evaluated or predicted. To better characterize the rules that govern the complex wine microbial ecosystem, a model yeast consortium comprising eight species commonly encountered in South African grape musts and an ARISA based method to monitor their dynamics were developed and validated. The dynamics of these species were evaluated in synthetic must in the presence or absence of S. cerevisiae using direct viable counts and ARISA. The data show that S. cerevisiae specifically suppresses certain species while appearing to favor the persistence of other species. Growth dynamics in Chenin blanc grape must fermentation was monitored only through viable counts. The interactions observed in the synthetic must, were upheld in the natural must fermentations, suggesting the broad applicability of the observed ecosystem dynamics. Importantly, the presence of indigenous yeast populations did not appear to affect the broad interaction patterns between the consortium species. The data show that the wine ecosystem is characterized by both mutually supportive and inhibitory species. The current study presents a first step in the development of a model to predict the oenological potential of any given wine mycobiome.
Collapse
Affiliation(s)
| | | | - Mathabatha E. Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
Jood I, Hoff JW, Setati ME. Evaluating fermentation characteristics of Kazachstania spp. and their potential influence on wine quality. World J Microbiol Biotechnol 2017; 33:129. [PMID: 28585169 DOI: 10.1007/s11274-017-2299-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
The current study is the first one to demonstrate the wine fermentation potential of members of several species of the genus Kazachstania including strains derived from grape must. The fermentation characteristics were evaluated in synthetic grape juice medium and in Sauvignon blanc. Our data show that none of the species evaluated could ferment to dryness in monoculture fermentations. However, at least 75% of the sugar was consumed before the fermentations got stuck. In mixed-culture fermentations with Saccharomyces cerevisiae diverse aroma profiles were evident especially in Sauvignon blanc fermentations. Four distinct potential aroma associations were identified: (i) Kazachstania solicola-vinegar and solvent-like, (ii) Kazachstania hellenica-spirituous, cheesy, (iii) Kazachstania aerobia CBS-fruity, floral (iv) K. aerobia IWBT, Kazachstania unispora and Kazachstania servazii-rancid, harsh. Furthermore, strain variation was apparent as the two K. aerobia strains displayed distinct karyotypes and aroma potential. Our data show that although members of the genus Kazachstania are typically encountered at low frequency in grape must, some of the species have positive aroma attributes that should be explored further.
Collapse
Affiliation(s)
- Illse Jood
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa
| | - Justin Wallace Hoff
- Agricultural Research Council Infruitec-Nietvoorbij, P/Bag X5026, Stellenbosch, 7599, South Africa
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, P/Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
18
|
Morgan HH, du Toit M, Setati ME. The Grapevine and Wine Microbiome: Insights from High-Throughput Amplicon Sequencing. Front Microbiol 2017; 8:820. [PMID: 28553266 PMCID: PMC5425579 DOI: 10.3389/fmicb.2017.00820] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
From the time when microbial activity in wine fermentation was first demonstrated, the microbial ecology of the vineyard, grape, and wine has been extensively investigated using culture-based methods. However, the last 2 decades have been characterized by an important change in the approaches used for microbial examination, due to the introduction of DNA-based community fingerprinting methods such as DGGE, SSCP, T-RFLP, and ARISA. These approaches allowed for the exploration of microbial community structures without the need to cultivate, and have been extensively applied to decipher the microbial populations associated with the grapevine as well as the microbial dynamics throughout grape berry ripening and wine fermentation. These techniques are well-established for the rapid more sensitive profiling of microbial communities; however, they often do not provide direct taxonomic information and possess limited ability to detect the presence of rare taxa and taxa with low abundance. Consequently, the past 5 years have seen an upsurge in the application of high-throughput sequencing methods for the in-depth assessment of the grapevine and wine microbiome. Although a relatively new approach in wine sciences, these methods reveal a considerably greater diversity than previously reported, and identified several species that had not yet been reported. The aim of the current review is to highlight the contribution of high-throughput next generation sequencing and metagenomics approaches to vineyard microbial ecology especially unraveling the influence of vineyard management practices on microbial diversity.
Collapse
Affiliation(s)
- Horatio H Morgan
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch UniversityStellenbosch, South Africa
| | - Maret du Toit
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch UniversityStellenbosch, South Africa
| | - Mathabatha E Setati
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch UniversityStellenbosch, South Africa
| |
Collapse
|
19
|
Godálová Z, Kraková L, Puškárová A, Bučková M, Kuchta T, Piknová Ľ, Pangallo D. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené). Int J Food Microbiol 2016; 217:110-6. [DOI: 10.1016/j.ijfoodmicro.2015.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|