Petkevičius V, Juknevičiūtė J, Mašonis D, Meškys R. Synthetic pathways for microbial biosynthesis of valuable pyrazine derivatives using genetically modified
Pseudomonas putida KT2440.
Metab Eng Commun 2025;
20:e00258. [PMID:
40236303 PMCID:
PMC11999294 DOI:
10.1016/j.mec.2025.e00258]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Using engineered microbes for synthesizing high-valued chemicals from renewable sources is a foundation in synthetic biology, however, it is still in its early stages. Here, we present peculiarities and troubleshooting of the construction of novel synthetic metabolic pathways in genetically modified work-horse Pseudomonas putida KT2440. The combination of this microbial host and heterologous expressed non-heme diiron monooxygenases enabled de novo biosynthesis of 2,5-dimethylpyrazine (2,5-DMP) carboxylic acid and N-oxides as target products. A key intermediate, 2,5-DMP, was obtained by using Pseudomonas putida KT2440Δ6 strain containing six gene deletions in the L-threonine pathway, along with the overexpression of thrA S345F and tdh from E. coli. Thus, the carbon surplus was redirected from glucose through L-threonine metabolism toward the formation of 2,5-DMP, resulting in a product titre of 106 ± 30 mg L-1. By introducing two native genes (thrB and thrC from P. putida KT2440) from the L-threonine biosynthesis pathway, the production of 2,5-DMP was increased to 168 ± 20 mg L-1. The resulting 2,5-DMP was further derivatized through two separate pathways. Recombinant P. putida KT2440 strain harboring xylene monooxygenase (XMO) produced 5-methyl-2-pyrazinecarboxylic acid from glucose as a targeted compound in a product titre of 204 ± 24 mg L-1. The microbial host containing genes of PmlABCDEF monooxygenase (Pml) biosynthesized N-oxides - 2,5-dimethylpyrazine 1-oxide as a main product, and 2,5-dimethylpyrazine 1,4-dioxide as a minor product, reaching product titres of 82 ± 8 mg L-1 and 11 ± 2 mg L-1 respectively.
Collapse