1
|
Shen F, Wang Q, Ullah S, Pan Y, Zhao M, Wang J, Chen M, Feng F, Zhong H. Ligilactobacillus acidipiscis YJ5 modulates the gut microbiota and produces beneficial metabolites to relieve constipation by enhancing the mucosal barrier. Food Funct 2024; 15:310-325. [PMID: 38086666 DOI: 10.1039/d3fo03259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Constipation is a prevalent gastrointestinal (GI) problem affecting a large number of individuals. This study aimed to investigate peristalsis-promoting potential characteristics of Ligilactobacillus acidipiscis YJ5 and the underlying molecular mechanism. The study demonstrated the relieving effect of L. acidipiscis YJ5 on constipation in both zebrafish and mouse models. L. acidipiscis YJ5 intervention significantly increased intestinal peristalsis by reducing the peak time and increasing the fluorescence disappearance rate in the zebrafish model. In the mouse model, the symptoms of constipation relief induced by L. acidipiscis YJ5 included a shortened first black stool time, an increased number of defecation particles, an accelerated propulsion rate of the small intestine, and an increase in fecal water content. L. acidipiscis YJ5 was found to reduce the expression of colonic aquaporins to normalize the colonic water transport system of constipated mice. Additionally, L. acidipiscis YJ5 reversed loperamide-induced morphological damage in the ileum and colon and increased the colonic mucosal barrier. The results of the 16S rRNA gene analysis indicated that L. acidipiscis YJ5 could reverse the structure of gut microbiota to a near-normal group, including levels of β-diversity, phylum, family, and genus. Furthermore, the fermentation supernatant of L. acidipiscis YJ5 was shown to relieve constipation, and metabolomics analysis revealed that these positive effects were related to its metabolites like malic acid and heliangin.
Collapse
Affiliation(s)
- Fei Shen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| | - Qianqian Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Sami Ullah
- ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
| | - Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Ming Chen
- Hangzhou Kangyuan Food Science & Technology Co., Ltd., Hangzhou 310012, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
- ZhongYuan Institute, Zhejiang University, Zhengzhou, 450001, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Kingkaew E, Woraprayote W, Booncharoen A, Niwasabutra K, Janyaphisan T, Vilaichone RK, Yamaoka Y, Visessanguan W, Tanasupawat S. Functional genome analysis and anti-Helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7C from Thai fermented pork (Nham). Sci Rep 2023; 13:20362. [PMID: 37990119 PMCID: PMC10663479 DOI: 10.1038/s41598-023-47687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Helicobacter pylori, linked to gastric diseases, is targeted for probiotic treatment through bacteriocin production. Bacteriocins have gained recognition for their non-toxic effects on host cells and their ability to combat a wide range of pathogens. This study aimed to taxonomically characterize and evaluate the safety and probiotic properties of the novel species of Lactococcus sp. NH2-7C isolated from fermented pork, as well as its bacteriocin NH2-7C, both in vitro and in silico. Comparative genotypic analysis revealed an average nucleotide identity of 94.96%, an average amino acid identity of 94.29%, and a digital DNA-DNA hybridization value of 63.80% when compared to Lactococcus lactis subsp. lactis JCM 5805T. These findings suggest that strain NH2-7C represents a novel species within the genus Lactococcus. In silico assessments confirmed the non-pathogenic nature of strain NH2-7C and the absence of genes associated with virulence and biogenic amine formation. Whole-genome analysis revealed the presence of the nisA gene responsible for nisin A production, indicating its potential as a beneficial compound with anti-Helicobacter pylori activity and non-toxic characteristics. Probiotic assessments indicated bile salt hydrolase and cholesterol assimilation activities, along with the modulation of interleukin-6 and tumour necrosis factor-α secretion. Strain NH2-7C demonstrated gastrointestinal tolerance and the ability to adhere to Caco-2 cells, affirming its safety and probiotic potential. Additionally, its ability to produce bacteriocins supports its suitability as a functional probiotic strain with therapeutic potential. However, further in vitro and in vivo investigations are crucial to ensure its safety and explore potential applications for Lactococcus sp. NH2-7C as a probiotic agent.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Auttaporn Booncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanidta Niwasabutra
- Thailand Institute of Scientific and Technological Research (TISTR) Biodiversity Research Centre, Pathum Thani, 12120, Thailand
| | - Thitiphorn Janyaphisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ratha-Korn Vilaichone
- GI Unit, Department of Medicine, and Center of Excellence in Digestive Diseases, Thammasat University, Thailand Science Research and Innovation Fundamental Fund, Bualuang ASEAN Chair Professorship at Thammasat University, Pathum Thani, 12120, Thailand
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine Oita University, Yufu, Oita, Japan
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Kingkaew E, Konno H, Hosaka Y, Tanasupawat S. Probiogenomic Analysis of Lactiplantibacillus sp. LM14-2 from Fermented Mussel (Hoi-dong), and Evaluation of its Cholesterol-lowering and Immunomodulation Effects. Probiotics Antimicrob Proteins 2023; 15:1206-1220. [PMID: 35987935 DOI: 10.1007/s12602-022-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
Lactiplantibacillus sp. LM14-2, isolated from Thai-fermented mussel (Hoi-dong), showed attractive probiotic properties. This strain was identified as Lactiplantibacillus plantarum based on its phenotypic, chemotaxonomic, and genetic characteristics including whole-genome sequencing (WGS). The draft genome sequence was analyzed and annotated for the molecular mechanisms involved in the safety assessment, the adaptation and adhesion of L. plantarum LM14-2 to the gastrointestinal tract (GIT), and the beneficial genes involved in bacteria-host interactions. The L. plantarum LM14-2 exhibited bile salt hydrolase (BSH) activity, assimilated cholesterol at 86.07 ± 5.03%, stimulated the secretion of interleukin-12, interferon-gamma, and human beta defensin-2, and induced nitric oxide production. In addition, L. plantarum LM14-2 showed excellent gastrointestinal tolerance and adhesion ability to Caco-2 cells. Furthermore, the in silico analysis showed that L. plantarum LM14-2 was a non-human pathogen and did not contain antibiotic resistance genes or plasmids. L. plantarum LM14-2 also contained potential genes associated with various probiotic characteristics and health-promoting effects. Consequently, this study suggested that L. plantarum LM14-2 could be considered safe, with potential probiotic properties and health-promoting impacts, which could facilitate its probiotic application.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Konno
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita, 019-2112, Japan
| | - Yoshihito Hosaka
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita, 019-2112, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Kingkaew E, Konno H, Hosaka Y, Phongsopitanun W, Tanasupawat S. Characterization of Lactic Acid Bacteria from Fermented Fish (pla-paeng-daeng) and Their Cholesterol-lowering and Immunomodulatory Effects. Microbes Environ 2023; 38. [PMID: 36754424 PMCID: PMC10037097 DOI: 10.1264/jsme2.me22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The cholesterol-lowering and immunomodulatory effects and probiotic properties of 25 lactic acid bacteria (LAB) isolated from fermented fish (pla-paeng-daeng) in Thailand were examined in the present study. Based on their phenotypic and genetic characteristics, LAB were identified as Lactiplantibacillus pentosus (Group I, 6 isolates), Lactiplantibacillus argentoratensis (Group II, 1 isolate), Limosilactobacillus fermentum (Group III, 2 isolates), Companilactobacillus pabuli (Group IV, 4 isolates), Companilactobacillus farciminis (Group V, 5 isolates), Companilactobacillus futsaii (Group VI, 6 isolates), and Enterococcus lactis (Group VII, 1 isolate). Lactiplantibacillus pentosus PD3-1 and PD9-2 and Enterococcus lactis PD3-2 exhibited bile salt hydrolase (BSH) activities. The percentage of cholesterol assimilated by all isolates ranged between 21.40 and 54.07%. Bile salt hydrolase-producing isolates tolerated acidic and bile conditions and possessed adhesion properties. They also exerted immunomodulatory effects that affected the production of interleukin-12 (IL-12), interferon-γ (IFN-γ), human β-defensin-2 (hBD-2), and nitric oxide (NO). These isolates meet standard probiotic requirements and exert beneficial effects.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | | | | | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University
| |
Collapse
|
5
|
Kingkaew E, Konno H, Hosaka Y, Phongsopitanun W, Tanasupawat S. Distribution, cholesterol-lowering and immunomodulation effects of lactic acid bacteria from fermented mussel ( Hoi-dong). Heliyon 2022; 8:e12272. [PMID: 36590538 PMCID: PMC9800316 DOI: 10.1016/j.heliyon.2022.e12272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Forty-eight lactic acid bacteria (LAB) isolated from fermented mussels in Thailand were evaluated for their probiotic properties, bile salt hydrolase (BSH), cholesterol assimilation and immunomodulatory effects. They were identified as Companilactobacillus formosensis (Group I, 10 isolates), Lentilactobacillus buchneri (Group II, 8 isolates), Lactiplantibacillus plantarum subsp. plantarum (Group III, 16 isolates), Lacticaseibacillus rhamnosus (Group IV, 1 isolate), Pediococcus pentosaceus (Group V, 5 isolates) and P. acidilactici (Group V, 1 isolate), Enterococcus thailandicus (Group VI, 2 isolates), En. hirae (Group VII, 1 isolate), En. durans (Group VI, 1 isolate), Lactococcus lactis subsp. lactis (Group VII, 1 isolate), Lc. lactis subsp. hordinae (Group VII, 1 isolate), and Leuconostoc lactis (Group VIII, 1 isolate), based on their phenotypic and genetic characteristics. Seven isolates, L. plantarum subsp. plantarum LM6-1, LM6-2, LM7-2-2B, LM12-1, LM14-1, LM15-1P and LM15-2 expressed bile salt hydrolase activity. All isolates assimilated cholesterol ranging from 20.73 to 79.40%. BSH-producing isolates were tolerant to acidic and bile conditions and showed the adhesion ability to Caco-2 cells. The BSH-producing and selected isolates showed the immunomodulatory effects to stimulate interleukin-12 (IL-12), interferon-gamma (IFN-γ), human beta defensin-2 (hBD-2) and nitric oxide (NO) production at various levels. Therefore, these results indicated that the isolates meet the standard probiotic criteria and beneficial effects.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Konno
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita 019-2112, Japan
| | - Yoshihito Hosaka
- Akita Konno CO., LTD., 248 Aza Kariwano, Daisen-shi, Akita 019-2112, Japan
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author.
| |
Collapse
|
6
|
A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 2019; 217:79-89. [DOI: 10.1016/j.carbpol.2019.04.025] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/16/2023]
|
7
|
Kazou M, Alexandraki V, Blom J, Pot B, Tsakalidou E, Papadimitriou K. Comparative Genomics of Lactobacillus acidipiscis ACA-DC 1533 Isolated From Traditional Greek Kopanisti Cheese Against Species Within the Lactobacillus salivarius Clade. Front Microbiol 2018; 9:1244. [PMID: 29942291 PMCID: PMC6004923 DOI: 10.3389/fmicb.2018.01244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/23/2018] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus acidipiscis belongs to the Lactobacillus salivarius clade and it is found in a variety of fermented foods. Strain ACA-DC 1533 was isolated from traditional Greek Kopanisti cheese and among the available L. acidipiscis genomes it is the only one with a fully sequenced chromosome. L. acidipiscis strains exhibited a high degree of conservation at the genome level. Investigation of the distribution of prophages and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) among the three strains suggests the potential existence of lineages within the species. Based on the presence/absence patterns of these genomic traits, strain ACA-DC 1533 seems to be more related to strain JCM 10692T than strain KCTC 13900. Interestingly, strains ACA-DC 1533 and JCM 10692T which lack CRISPRs, carry two similar prophages. In contrast, strain KCTC 13900 seems to have acquired immunity to these prophages according to the sequences of spacers in its CRISPRs. Nonetheless, strain KCTC 13900 has a prophage that is absent from strains ACA-DC 1533 and JCM 10692T. Furthermore, comparative genomic analysis was performed among L. acidipiscis ACA-DC 1533, L. salivarius UCC118 and Lactobacillus ruminis ATCC 27782. The chromosomes of the three species lack long-range synteny. Important differences were also determined in the number of glycobiome related proteins, proteolytic enzymes, transporters, insertion sequences and regulatory proteins. Moreover, no obvious genomic traits supporting a probiotic potential of L. acidipiscis ACA-DC 1533 were detected when compared to the probiotic L. salivarius UCC118. However, the existence of more than one glycine-betaine transporter within the genome of ACA-DC 1533 may explain the ability of L. acidipiscis to grow in fermented foods containing high salt concentrations. Finally, in silico analysis of the L. acidipiscis ACA-DC 1533 genome revealed pathways that could underpin the production of major volatile compounds during the catabolism of amino acids that may contribute to the typical piquant flavors of Kopanisti cheese.
Collapse
Affiliation(s)
- Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|