1
|
Gu X, Shi Y, Luo C, Cheng J. Establishment of Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:111. [PMID: 39129014 PMCID: PMC11318150 DOI: 10.1186/s13068-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.
Collapse
Affiliation(s)
- Xiaosong Gu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hubei Province Key Lab Yeast Function, Yichang, 443003, China
| | - Yumei Shi
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China
| | - Changxin Luo
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China.
| | - Jintao Cheng
- Xianghu Laboratory, Hangzhou, 310027, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Ali SA, Songdech P, Samakkarn W, Duangphakdee O, Soontorngun N. New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance. Yeast 2024; 41:401-417. [PMID: 38708451 DOI: 10.1002/yea.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.
Collapse
Affiliation(s)
- Syed Azhar Ali
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Wiwan Samakkarn
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Orawan Duangphakdee
- Native Honeybee and Pollinator Research Center, King Mongkut's University of Technology Thonburi, Ratchaburi, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
3
|
Songdech P, Butkinaree C, Yingchutrakul Y, Promdonkoy P, Runguphan W, Soontorngun N. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res 2024; 24:foae006. [PMID: 38331422 PMCID: PMC10878408 DOI: 10.1093/femsyr/foae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Only trace amount of isobutanol is produced by the native Saccharomyces cerevisiae via degradation of amino acids. Despite several attempts using engineered yeast strains expressing exogenous genes, catabolite repression of glucose must be maintained together with high activity of downstream enzymes, involving iron-sulfur assimilation and isobutanol production. Here, we examined novel roles of nonfermentable carbon transcription factor Znf1 in isobutanol production during xylose utilization. RNA-seq analysis showed that Znf1 activates genes in valine biosynthesis, Ehrlich pathway and iron-sulfur assimilation while coupled deletion or downregulated expression of BUD21 further increased isobutanol biosynthesis from xylose. Overexpression of ZNF1 and xylose-reductase/dehydrogenase (XR-XDH) variants, a xylose-specific sugar transporter, xylulokinase, and enzymes of isobutanol pathway in the engineered S. cerevisiae pho13gre3Δ strain resulted in the superb ZNXISO strain, capable of producing high levels of isobutanol from xylose. The isobutanol titer of 14.809 ± 0.400 g/L was achieved, following addition of 0.05 g/L FeSO4.7H2O in 5 L bioreactor. It corresponded to 155.88 mg/g xylose consumed and + 264.75% improvement in isobutanol yield. This work highlights a new regulatory control of alternative carbon sources by Znf1 on various metabolic pathways. Importantly, we provide a foundational step toward more sustainable production of advanced biofuels from the second most abundant carbon source xylose.
Collapse
Affiliation(s)
- Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chutikarn Butkinaree
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Peerada Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
4
|
Gambacorta FV, Wagner ER, Jacobson TB, Tremaine M, Muehlbauer LK, McGee MA, Baerwald JJ, Wrobel RL, Wolters JF, Place M, Dietrich JJ, Xie D, Serate J, Gajbhiye S, Liu L, Vang-Smith M, Coon JJ, Zhang Y, Gasch AP, Amador-Noguez D, Hittinger CT, Sato TK, Pfleger BF. Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway. Synth Syst Biotechnol 2022; 7:738-749. [PMID: 35387233 PMCID: PMC8938195 DOI: 10.1016/j.synbio.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.
Collapse
Affiliation(s)
- Francesca V. Gambacorta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellen R. Wagner
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mick A. McGee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin J. Baerwald
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Russell L. Wrobel
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - John F. Wolters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Mike Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Dietrich
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Serate
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shabda Gajbhiye
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Maikayeng Vang-Smith
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P. Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F. Pfleger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Su Y, Shao W, Zhang A, Zhang W. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6147039. [PMID: 33620449 DOI: 10.1093/femsyr/foab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2021] [Indexed: 11/14/2022] Open
Abstract
Improving yeast tolerance toward isobutanol is a critical issue enabling high-titer industrial production. Here, we used EMS mutagenesis to screen Saccharomyces cerevisiae with greater tolerance toward isobutanol. By this method, we obtained EMS39 with high-viability in medium containing 16 g/L isobutanol. Then, we metabolically engineered isobutanol synthesis in EMS39. About 2μ plasmids carrying PGK1p-ILV2, PGK1p-ILV3 and TDH3p-cox4-ARO10 were used to over-express ILV2, ILV3 and ARO10 genes, respectively, in EMS39 and wild type W303-1A. And the resulting strains were designated as EMS39-20 and W303-1A-20. Our results showed that EMS39-20 increased isobutanol titers by 49.9% compared to W303-1A-20. Whole genome resequencing analysis of EMS39 showed that more than 59 genes had mutations in their open reading frames or regulatory regions. These 59 genes are enriched mainly into cell growth, basal transcription factors, cell integrity signaling, translation initiation and elongation, ribosome assembly and function, oxidative stress response, etc. Additionally, transcriptomic analysis of EMS39-20 was carried out. Finally, reverse engineering tests showed that overexpression of CWP2 and SRP4039 could improve tolerance of S.cerevisiae toward isobutanol. In conclusion, EMS mutagenesis could be used to increase yeast tolerance toward isobutanol. Our study supplied new insights into mechanisms of tolerance toward isobutanol and enhancing isobutanol production in S. cerevisiae.
Collapse
Affiliation(s)
- Yide Su
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Wenju Shao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Aili Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| |
Collapse
|
6
|
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020; 59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.
Collapse
Affiliation(s)
- Francesca V Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Joshua J Dietrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|