1
|
Lebreton E, Ertz D, Lücking R, Aptroot A, Carriconde F, Ah-Peng C, Huang JP, Chen KH, Stenger PL, Cáceres MEDS, van den Boom P, Sérusiaux E, Magain N. Global phylogeny of the family Gomphillaceae ( Ascomycota, Graphidales) sheds light on the origin, diversification and endemism in foliicolous lineages. IMA Fungus 2025; 16:e144194. [PMID: 40052070 PMCID: PMC11882023 DOI: 10.3897/imafungus.16.144194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 03/09/2025] Open
Abstract
Foliicolous lichens grow on living leaves of vascular plants. They are mostly found in tropical to subtropical or temperate rainforests. Many phenotype-based species are considered as pantropical or even sub-cosmopolitan, either attributed to old ages, having existed prior to continental breakups or long-distance dispersal. We built a much expanded, global phylogeny of Gomphillaceae, the most diverse group of leaf-dwelling lichenised fungi. Our sampling encompassed six major biodiversity hotspots: MIOI (Madagascar and the Indian Ocean Islands), the Caribbean, New Caledonia, the Colombian Chocó, Mesoamerica and the Atlantic coast of Brazil. It was based on multilocus sequence data (mtSSU rDNA, nuLSU rDNA and RPB1), including 2207 sequences of 1256 specimens. Species delimitation methods combined with a phenotype matrix identified 473 putative species. Amongst these, 104 are confirmed as described, 213 are classified as cryptic or near cryptic (hidden diversity), 100 represent new species to science (identified on the basis of phenotype) and 56 remain unidentified. Amongst the 104 species with a valid name, 40.5% are distributed across 2-5 continents (lichenogeographical regions) by applying the phenotype-based species concept. However, using the integrative approach to delineate species, this estimate is reduced to 9%. We estimate the global species richness of Gomphillaceae at 1,861-2,356 species. The timing of species-level divergences suggests that the current distribution of foliicolous lichens is shaped more by long-distance dispersal and rapid diversification than by vicariance. The origin of the family and major clades appears to be in the Neotropics, with subsequent numerous dispersal events. Our results support the separation of three major lineages, corresponding to the former families Asterothyriaceae, Gomphillaceae s.str. and Solorinellaceae, which should be recognised at the subfamily level.
Collapse
Affiliation(s)
- Elise Lebreton
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| | - Damien Ertz
- Department of Research, Meise Botanic Garden, B-1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Service Général de l’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-Bruxelles, B-1080 Bruxelles, BelgiumService Général de l’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-BruxellesBruxellesBelgium
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| | - Andre Aptroot
- Laboratório de Botânica / Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, CEP 79070-900, Campo Grande, Mato Grosso do Sul, BrazilUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
| | - Fabian Carriconde
- Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg), 98800 Nouméa, New Caledonia (Fr)Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg)NouméaNew Caledonia (Fr)
| | - Claudine Ah-Peng
- UMR PVBMT, Université de La Réunion, Saint-Pierre, FranceMR PVBMT, Université de La RéunionSaint-PierreFrance
- OSU-R, Université de La Réunion, Saint-Denis, FranceOSU-R, Université de La RéunionSaint-DenisFrance
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Pierre-Louis Stenger
- Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg), 98800 Nouméa, New Caledonia (Fr)Institut Agronomique néo-Calédonien (IAC), Équipe « Sol & Végétation » (SolVeg)NouméaNew Caledonia (Fr)
- Omicsphere Analytics, 19 rue Philippe Maupas, 37250 Montbazon, FranceOmicsphere AnalyticsMontbazonFrance
| | - Marcela Eugenia da Silva Cáceres
- Departamento de Biologia, Universidade Federal de Sergipe, CEP 49107-230, São Cristóvão, Sergipe, BrazilUniversidade Federal de SergipeSão CristóvãoBrazil
| | - Pieter van den Boom
- Department of Research, Meise Botanic Garden, B-1860 Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Arafura 16, 5691JA, Son, NetherlandsUnaffiliatedSonNetherlands
| | - Emmanuël Sérusiaux
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| | - Nicolas Magain
- Biology, Evolution, Conservation, Inbios Research Center, University of Liège, Quartier Vallée 1, B-4000 Liège, BelgiumUniversity of LiègeLiègeBelgium
| |
Collapse
|
2
|
Blázquez M, Pérez-Vargas I, Garrido-Benavent I, Villar-dePablo M, Turégano Y, Frías-López C, Sánchez-Gracia A, de los Ríos A, Gasulla F, Pérez-Ortega S. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group ( Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. PERSOONIA 2024; 52:44-93. [PMID: 39161630 PMCID: PMC11319839 DOI: 10.3767/persoonia.2024.52.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2023] [Accepted: 11/15/2023] [Indexed: 08/21/2024]
Abstract
Oceanic islands have been recognized as natural laboratories in which to study a great variety of evolutionary processes. One such process is evolutionary radiations, the diversification of a single ancestor into a number of species that inhabit different environments and differ in the traits that allow them to exploit those environments. The factors that drive evolutionary radiations have been studied for decades in charismatic organisms such as birds or lizards, but are lacking in lichen-forming fungi, despite recent reports of some lineages showing diversification patterns congruent with radiation. Here we propose the Ramalina decipiens group as a model system in which to carry out such studies. This group is currently thought to be comprised of five saxicolous species, all of them endemic to the Macaronesian region (the Azores, Madeira, Selvagens, Canary and Cape Verde islands). Three species are single-island endemics (a rare geographic distribution pattern in lichens), whereas two are widespread and show extreme morphological variation. The latter are suspected to harbor unrecognized species-level lineages. In order to use the Ramalina decipiens group as a model system it is necessary to resolve the group's phylogeny and to clarify its species boundaries. In this study we attempt to do so following an integrative taxonomy approach. We constructed a phylogenetic tree based on six molecular markers, four of which are newly developed and generated competing species hypotheses based on molecular (species discovery strategies based on both single locus and multilocus datasets) and phenotypic data (unsupervised clustering algorithms based on morphology, secondary chemistry and geographic origin). We found that taxonomic diversity in the Ramalina decipiens group has been highly underestimated in previous studies. In consequence, we describe six new species, most of them single-island endemics and provide a key to the group. Phylogenetic relationships among species have been reconstructed with almost full support which, coupled with the endemic character of the group, makes it an excellent system for the study of island radiations in lichen-forming fungi. Citation: Blázquez M, Pérez-Vargas I, Garrido-Benavent I, et al. 2024. Endless forms most frustrating: disentangling species boundaries in the Ramalina decipiens group (Lecanoromycetes, Ascomycota), with the description of six new species and a key to the group. Persoonia 52: 44-93. https://doi.org/10.3767/persoonia.2024.52.03 .
Collapse
Affiliation(s)
- M. Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - I. Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - I. Garrido-Benavent
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), València, Spain
| | - M. Villar-dePablo
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Y. Turégano
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| | - C. Frías-López
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - A. de los Ríos
- Department of Microbial Ecology and Geomicrobiology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - F. Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - S. Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Davydov EA, Himelbrant DE, Kuznetsova ES, Stepanchikova IS, Yakovchenko LS. Multilocus Molecular Phylogeny of the Umbilicaria aprina Group (Umbilicariaceae, Lichenized Ascomycota) Supports Species Level and Neo-Endemic Status of Umbilicaria krascheninnikovii. PLANTS (BASEL, SWITZERLAND) 2024; 13:729. [PMID: 38475574 PMCID: PMC10933792 DOI: 10.3390/plants13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The Northeast Asian endemic species of lichen-forming fungus Umbilicaria krascheninnikovii is herein discussed in the global context of biogeography and phylogeny of the U. aprina group. The name U. krascheninnikovii has been erroneously used by lichenologists for Umbilicaria spp. from high latitudes or altitudes worldwide, as there are omphalodisc apothecia and rough "crystals" of a necral layer on the upper surface. To test the monophyly and phylogenetic relationships within the U. aprina group, four independent DNA regions (nrITS/5.8S, RPB2, mtLSU, and mtSSU) were used for six rare species, including a dozen specimens of U. krascheninnikovii from its locus classicus in Kamchatka. The study is based on the phylograms obtained using maximum likelihood and a Bayesian phylogenetic inference framework. As a result of phylogenetic and biogeographic analyses, it was shown that U. krascheninnikovii is a neo-endemic of the areas of modern volcanism in Kamchatka, Japan, as well as in the Kurile Islands, where this species was recorded for the first time. The morphology of U. krascheninnikovii is herein described and illustrated. Increasing the role of the sexual process and reducing asexual thalloconidiogenesis are shown to be apomorphic traits in the U. aprina group. The combination of sexual and asexual reproduction provides adaptive advantages in changing environmental conditions.
Collapse
Affiliation(s)
| | - Dmitry E. Himelbrant
- Komarov Botanical Institute, Professor Popov St. 2, St. Petersburg 197376, Russia; (D.E.H.); (E.S.K.); (I.S.S.)
- Saint-Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia
| | - Ekaterina S. Kuznetsova
- Komarov Botanical Institute, Professor Popov St. 2, St. Petersburg 197376, Russia; (D.E.H.); (E.S.K.); (I.S.S.)
- Saint-Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia
| | - Irina S. Stepanchikova
- Komarov Botanical Institute, Professor Popov St. 2, St. Petersburg 197376, Russia; (D.E.H.); (E.S.K.); (I.S.S.)
- Saint-Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia
| | - Lidia S. Yakovchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 100th Anniversary of Vladivostok Avenue, 159, Vladivostok 690022, Russia;
| |
Collapse
|
4
|
Mercado-Díaz JA, Lücking R, Moncada B, C St E Campbell K, Delnatte C, Familia L, Falcón-Hidalgo B, Motito-Marín A, Rivera-Queralta Y, Widhelm TJ, Thorsten Lumbsch H. Species assemblages of insular Caribbean Sticta (lichenized Ascomycota: Peltigerales) over ecological and evolutionary time scales. Mol Phylogenet Evol 2023:107830. [PMID: 37247703 DOI: 10.1016/j.ympev.2023.107830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Phylogenetic approaches to macroevolution have provided unique insight into evolutionary relationships, ancestral ranges, and diversification patterns for many taxa. Similar frameworks have also been developed to assess how environmental and/or spatial variables shape species diversity and distribution patterns at different spatial/temporal scales, but studies implementing these are still scarce for many groups, including lichens. Here, we combine phylogeny-based ancestral range reconstruction and diversification analysis with community phylogenetics to reconstruct evolutionary origins and assess patterns of taxonomic and phylogenetic relatedness between island communities of the lichenized fungal genus Sticta in the Caribbean. Sampling was carried out in the Greater Antilles (Cuba, Jamaica, Dominican Republic, and Puerto Rico) and Lesser Antilles (Dominica, Guadeloupe, and Martinique). Data for six molecular loci were obtained for 64 candidate Caribbean species and used to perform both macroevolutionary phylogenetics, which also included worldwide taxa, and phylobetadiversity analyses, which emphasized island-level communities. Our work uncovered high levels of island endemism (∼59%) in Caribbean Sticta. We estimate initial colonization of the region occurred about 19 Mya from a South American ancestor. Reverse migration events by Caribbean lineages to South America were also inferred. We found no evidence for increased diversification rates associated with range expansion into the Caribbean. Taxonomic and phylogenetic turnover between island-level communities was most strongly correlated with environmental variation rather than with geographic distance. We observed less dissimilarity among communities from the Dominican Republic and Jamaica than between these islands and the Lesser Antilles/Puerto Rico. High levels of hidden diversity and endemism in Caribbean Sticta reaffirm that islands are crucial for the maintenance of global biodiversity of lichenized fungi. Altogether, our findings suggest that strong evolutionary links exist between Caribbean and South American biotas but at regional scales, species assemblages exhibit complex taxonomic and phylogenetic relationships that are determined by local environments and shared evolutionary histories.
Collapse
Affiliation(s)
- Joel A Mercado-Díaz
- Committee on Evolutionary Biology, University of Chicago 1025 E. 57th Street, Chicago, Illinois 60637, U.S.A; Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Königin-Luise-Straße 6-8, 14195 Berlin, Germany.
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia.
| | - Keron C St E Campbell
- Natural History Museum of Jamaica, Institute of Jamaica, 10-16 East Street, Kingston, Jamaica.
| | - Cesar Delnatte
- Biotope Amazonie, 3 rue Mezin Gildon, F-97354 Rémire-Montjoly, Guyane française.
| | - Lemuel Familia
- Departamento de Vida Silvestre, Ministerio de Medio Ambiente y Recursos Naturales, Avenida Cayetano Germosén esq. Avenida Gregorio Luperón, Ensanche El Pedregal, Santo Domingo, República Dominicana.
| | - Banessa Falcón-Hidalgo
- Jardín Botánico Nacional, Universidad de La Habana, Carretera "El Rocío" km 3.5, Calabazar, Boyeros, La Habana, Cuba.
| | - Angel Motito-Marín
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Yoira Rivera-Queralta
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Todd J Widhelm
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - H Thorsten Lumbsch
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| |
Collapse
|
5
|
Masumoto H, Sanders WB. The Lichen Photobiont Genus Rhizonema (cyanobacteria) Exhibits Diverse Modes of Branching, Both False and True. JOURNAL OF PHYCOLOGY 2022; 58:612-625. [PMID: 35567534 DOI: 10.1111/jpy.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The recently described genus Rhizonema is among the most important cyanobacterial partners in lichen symbioses, but its morphological characterization in the genus diagnosis-true branching of the T-type-appears at odds with several published figures showing false branching. We investigated cyanobiont branching and cell division with light microscopy in two basidiolichens from Florida and one from Japan, including aposymbiotically cultured material of the latter. Mycobiont species identities (Cyphellostereum jamesianum, Dictyonema darwinianum, and D. moorei) and photobiont genus identity (Rhizonema) were corroborated with ITS and rbcLX sequences, respectively. Single and paired false branching occurred commonly in all three strains examined. False branches developed adjacent to necridic cells or heterocytes, or by separation of vegetative cells at compression folds in the trichome. Non-transverse cell divisions, usually oblique, were observed in two of the three Rhizonema strains examined. T-type true branches sometimes arose from such divisions, although oblique growth from the branch cell often resulted in ambiguous branch junctions. Additionally, Y-type true branches appeared to grow from contorted filaments. In cultured material, a kind of pseudo-branch sometimes arose from single- or several-celled segments liberated from trichome apices. The segments attached secondarily to filaments and grew there as apparent branches. We conclude that Rhizonema is a genus of considerable morphological flexibility, with multiple modes of branching possible in a single strain. While true branching or non-transverse divisions, when observable, may help distinguish Rhizonema from the phenotypically similar Scytonema, false branching occurs commonly in both genera, and therefore cannot be used to distinguish them.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Laboratory of Terrestrial Microbiology and Systematics, Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Kyoto, 606-8501, Japan
| | - William B Sanders
- Department of Biological Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. South, Ft. Myers, Florida, USA
| |
Collapse
|
6
|
Cyphellostereum ushimanum sp. nov. (Hygrophoraceae, Agaricales) described from Amami-Oshima Island (Kagoshima Prefecture, Ryukyu Islands), Japan, with ultrastructural observations of its Rhizonema photobiont filaments penetrated longitudinally by a central haustorium. Mycol Prog 2022. [DOI: 10.1007/s11557-021-01766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Nelsen MP. Sharing and double-dating in the lichen world. Mol Ecol 2021; 30:1751-1754. [PMID: 33720470 DOI: 10.1111/mec.15884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Historic and modern efforts to understand lichen diversity and evolution have overwhelmingly concentrated on that of the fungal partner, which represents one of the most taxonomically diverse nutritional modes among the Fungi. But what about the algal and cyanobacterial symbionts? An explosion of studies on these cryptic symbionts over the past 20+ years has facilitated a richer understanding of their diversity, patterns of association, and the symbiosis itself. In a From the Cover article in this issue of Molecular Ecology, Dal Forno et al. (2021) provide new insight into one of the most fascinating lichen symbioses. By sequencing cyanobacterial symbionts from over 650 specimens, they reveal the presence of overlooked cyanobacterial diversity, evidence for symbiont sharing among distantly related fungi, and utilize a comparative dating framework to demonstrate temporal discordance among interacting fungal and cyanobacterial lineages.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Negaunee Integrative Research Center and Grainger Bioinformatics Center, The Field Museum, Chicago, IL, USA
| |
Collapse
|
8
|
Heads M, Grehan JR. The Galápagos Islands: biogeographic patterns and geology. Biol Rev Camb Philos Soc 2021; 96:1160-1185. [PMID: 33749122 DOI: 10.1111/brv.12696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.
Collapse
Affiliation(s)
- Michael Heads
- Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY, 14211-1293, U.S.A
| | - John R Grehan
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, 3215 Hull Rd, Gainesville, FL, 32611, U.S.A
| |
Collapse
|
9
|
Understanding the genetic diversity of the guayabillo (Psidium galapageium), an endemic plant of the Galapagos Islands. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Colored Microbial Coatings in Show Caves from the Galapagos Islands (Ecuador): First Microbiological Approach. COATINGS 2020. [DOI: 10.3390/coatings10111134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Galapagos Islands (Ecuador) have a unique ecosystem on Earth due to their outstanding biodiversity and geological features. This also extends to their subterranean heritage, such as volcanic caves, with plenty of secondary mineral deposits, including coralloid-type speleothems and moonmilk deposits. In this study, the bacterial communities associated with speleothems from two lava tubes of Santa Cruz Island were investigated. Field emission scanning electron microscopy (FESEM) was carried out for the morphological characterization and detection of microbial features associated with moonmilk and coralloid speleothems from Bellavista and Royal Palm Caves. Microbial cells, especially filamentous bacteria in close association with extracellular polymeric substances (EPS), were abundant in both types of speleothems. Furthermore, reticulated filaments and Actinobacteria-like cells were observed by FESEM. The analysis of 16S rDNA revealed the presence of different bacterial phylotypes, many of them associated with the carbon, nitrogen, iron and sulfur cycles, and some others with pollutants. This study gives insights into subsurface microbial diversity of the Galapagos Islands and further shows the interest of the conservation of these subterranean geoheritage sites used as show caves.
Collapse
|
11
|
Dal Forno M, Lawrey JD, Sikaroodi M, Gillevet PM, Schuettpelz E, Lücking R. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol Ecol 2020; 30:1755-1776. [PMID: 33080083 DOI: 10.1111/mec.15700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Recent studies have uncovered remarkable diversity in Dictyonema s.lat. basidiolichens, here recognized as subtribe Dictyonemateae. This group includes five genera and 148 species, but hundreds more await description. The photobionts of these lichens belong to Rhizonema, a recently resurrected cyanobacterial genus known by a single species. To further investigate photobiont diversity within Dictyonemateae, we generated 765 new cyanobacterial sequences from 635 specimens collected from 18 countries. The ITS barcoding locus supported the recognition of 200 mycobiont (fungal) species among these samples, but the photobiont diversity was comparatively low. Our analyses revealed three main divisions of Rhizonema, with two repeatedly recovered as monophyletic (proposed as new species), and the third mostly paraphyletic. The paraphyletic lineage corresponds to R. interruptum and partnered with mycobionts from all five genera in Dictyonemateae. There was no evidence of photobiont-mycobiont co-speciation, but one of the monophyletic lineages of Rhizonema appears to partner predominantly with one of the two major clades of Cora (mycobiont) with samples collected largely from the northern Andes. Molecular clock estimations indicate the Rhizonema species are much older than the fungal species in the Dictyonemateae, suggesting that these basidiolichens obtained their photobionts from older ascolichen lineages and the photobiont variation in extant lineages of Dictyonemateae is the result of multiple photobiont switches. These results support the hypothesis of lichens representing "fungal farmers," in which diverse mycobiont lineages associate with a substantially lower diversity of photobionts by sharing those photobionts best suited for the lichen symbiosis among multiple and often unrelated mycobiont lineages.
Collapse
Affiliation(s)
- Manuela Dal Forno
- Botanical Research Institute of Texas, Fort Worth, TX, USA.,Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - James D Lawrey
- Department of Biology, George Mason University, Fairfax, VA, USA
| | | | | | - Eric Schuettpelz
- Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Robert Lücking
- Botanical Garden and Botanical Museum Berlin, Berlin, Germany.,Research Associate, Science & Education, The Field Museum, Chicago, IL, USA
| |
Collapse
|
12
|
Spjut R, Simon A, Guissard M, Magain N, Sérusiaux E. The fruticose genera in the Ramalinaceae (Ascomycota, Lecanoromycetes): their diversity and evolutionary history. MycoKeys 2020; 73:1-68. [PMID: 32994702 PMCID: PMC7501315 DOI: 10.3897/mycokeys.73.47287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 07/19/2020] [Indexed: 02/08/2023] Open
Abstract
We present phylogenetic analyses of the fruticose Ramalinaceae based on extensive collections from many parts of the world, with a special focus on the Vizcaíno deserts in north-western Mexico and the coastal desert in Namibia. We generate a four-locus DNA sequence dataset for accessions of Ramalina and two additional loci for Niebla and Vermilacinia. Four genera are strongly supported: the subcosmopolitan Ramalina, the new genus Namibialina endemic to SW Africa, and a duo formed by Niebla and Vermilacinia, endemic to the New World except the sorediate V. zebrina that disjunctly occurs in Namibia. The latter three genera are restricted to coastal desert and chaparral where vegetation depends on moisture from ocean fog. Ramalina is subcosmopolitan and much more diverse in its ecology. We show that Ramalina and its sister genus Namibialina diverged from each other at c. 48 Myrs, whereas Vermilacinia and Niebla split at c. 30 Myrs. The phylogeny of the fruticose genera remains unresolved to their ancestral crustose genera. Species delimitation within Namibialina and Ramalina is rather straightforward. The phylogeny and taxonomy of Vermilacinia are fully resolved, except for the two youngest clades of corticolous taxa, and support current taxonomy, including four new taxa described here. Secondary metabolite variation in Niebla generally coincides with major clades which are comprised of species complexes with still unresolved phylogenetic relationships. A micro-endemism pattern of allopatric species is strongly suspected for both genera, except for the corticolous taxa within Vermilacinia. Both Niebla and saxicolous Vermilacinia have chemotypes unique to species clades that are largely endemic to the Vizcaíno deserts. The following new taxa are described: Namibialina gen. nov. with N. melanothrix (comb. nov.) as type species, a single new species of Ramalina (R. krogiae) and four new species of Vermilacinia (V. breviloba, V. lacunosa, V. pustulata and V. reticulata). The new combination V. granulans is introduced. Two epithets are re-introduced for European Ramalina species: R. crispans (= R. peruviana auct. eur.) and R. rosacea (= R. bourgeana auct. p.p). A lectotype is designated for Vermilacinia procera. A key to saxicolous species of Vermilacinia is presented.
Collapse
Affiliation(s)
- Richard Spjut
- World Botanical Associates, PO Box 81145, Bakersfield, California 93380, USA World Botanical Associates Bakersfield, CA United States of America
| | - Antoine Simon
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Martin Guissard
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Nicolas Magain
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| | - Emmanuël Sérusiaux
- Evolution and Conservation Biology Unit, Sart Tilman B22, Quartier Vallée 1, chemin de la vallée 4, B-4000 Liège, Belgium Evolution and Conservation Biology Unit Liège Belgium
| |
Collapse
|
13
|
Masumoto H, Degawa Y. Bryoclavula phycophila gen. et sp. nov. belonging to a novel lichenized lineage in Cantharellales (Basidiomycota). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01588-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
The lichenized genus Cora (Basidiomycota: Hygrophoraceae) in Mexico: high species richness, multiple colonization events, and high endemism. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/pfs-2019-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractIn a continued effort to catalog the numerous phylogenetically detected and predicted species of Cora in the Americas, we focus here on the diversity of the genus in Mexico and the phylogenetic relationships of the taxa present in this area. Based on previous results and new collections, 12 taxa are recognized in Mexico, including eight new species and one new subspecies. The 12 taxa form 11 unrelated lineages within the genus, indicating multiple independent colonization from Central and South America. While the new subspecies is nested within a species known from the northern Andes in South America, the other species are all putative endemics for Mexico, resulting in endemism of 92% at species level and 100% at taxon level. Considering the rather narrow area of origin of the sequenced specimens in southeastern Mexico and the previously documented range of Cora including the northwestern part of the country, plus the underlying topography, we predict that the 12 species and subspecies now known represent only about 20% of the total richness of Cora in the country, and that many more endemic lineages are to be found in the western and northwestern parts (Sierra Madre Occidental). The new taxa from Mexico formally introduced in this study are Cora benitoana sp. nov., with a strongly projecting, cyphelloid hymenophore; C. buapana sp. nov., with elongate, finger-like and partly branched appendages on the lower medullary hyphae; C. dewisanti subsp. mexicana subsp. nov., with a marginally protruding hymenophore; C. guzmaniana sp. nov., with a partly setose lobe surface; C. ixtlanensis sp. nov., a phenotypically cryptic species similar but unrelated to C. terrestris; C. lawreyana sp. nov., with globose hyphal appendages; C. marusae sp. nov., a phenotypically cryptic species similar but unrelated to C. comaltepeca; C. totonacorum sp. nov., a phenotypically cryptic species similar but phylogenetically distant to C. davidia; and C. zapotecorum sp. nov., with a very thinly pilose lobe surface.
Collapse
|
15
|
A first phylogenetic assessment of Dictyonema s.lat. in southeastern North America reveals three new basidiolichens, described in honor of James D. Lawrey. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/pfs-2019-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThree species of lichenized basidiomycetes in the Dictyonema clade from southeastern North America are described as new to science: Cyphellostereum georgianum, C. jamesianum and Dictyonema lawreyi, all with a crustose-filamentous growth form. Based on ITS sequences, the species form well-supported monophyletic clades in a phylogeny and are represented by at least two specimens each. They are also distinguishable by morphological and anatomical characters. These new findings emphasize the importance of lichenological studies in North America, especially in historically understudied taxonomic groups, such as basidiolichens. This study is dedicated to James D. Lawrey on the occasion of his 70th birthday.
Collapse
|
16
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
17
|
Liu D, Yu Wang X, Wang LS, Maekawa N, Hur JS. Sulzbacheromyces sinensis, an Unexpected Basidiolichen, was Newly Discovered from Korean Peninsula and Philippines, with a Phylogenetic Reconstruction of Genus Sulzbacheromyces. MYCOBIOLOGY 2019; 47:191-199. [PMID: 31448139 PMCID: PMC6691760 DOI: 10.1080/12298093.2019.1617825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Most of lichens are formed by Ascomycota, less than 1% are lichenized Basidiomycota. The flora investigation of lichenized Ascomycota of South Korea has been well studied in the past three decades; however, prior to this study, none of basidiolichens was discovered. During the recent excursion, an unexpected clavarioid basidiolichen, Sulzbacheromyces sinensis was collected. Morphology and ecology has been recorded in detail. DNA was extracted, and ITS, 18S, 28S nuclear rDNA were generated. In order to further confirm the systematic position of the Korean specimens, maximum likelihood and Bayesian inference analysis including all the species of the order Lepidostromatales were conducted based on the ITS. As a result, the phylogenetic tree of the order Lepidostromatales was reconstructed, which differed from the previous studies. The inferred phylogenetic tree showed that species of Sulzbacheromyces in three different continents (Asia, South Africa and South America) were separated into three clades with support. In this study, the species worldwide distribution map of Lepidostromatales was illustrated, and S. sinensis had a widest distribution range (paleotropical extend to the Sino-Japanese) than other species (paleotropical or neotropical). Prior to this study, the range of distribution, southernmost and northernmost points and the fruiting time of S. sinensis were recorded, and the genus Sulzbacheromyces was firstly reported from Korean peninsula and Philippines.
Collapse
Affiliation(s)
- Dong Liu
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| | - Xin Yu Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Li Song Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jae-Seoun Hur
- Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea
| |
Collapse
|
18
|
Gerlach ADCL, Toprak Z, Naciri Y, Caviró EA, da Silveira RMB, Clerc P. New insights into the Usnea cornuta aggregate (Parmeliaceae, lichenized Ascomycota): Molecular analysis reveals high genetic diversity correlated with chemistry. Mol Phylogenet Evol 2019; 131:125-137. [DOI: 10.1016/j.ympev.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|