1
|
Sabari S, Julmohammad N, Jahurul HAM, Matanjun P, Ab. Wahab N. In Vitro Infant Digestion of Whey Proteins Isolate-Lactose. Foods 2023; 12:667. [PMID: 36766193 PMCID: PMC9914322 DOI: 10.3390/foods12030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The model in vitro protein digestion technique has received greater attention due to providing significant advantages compared to in vivo experiments. This research employed an in vitro infant digestive static model to examine the protein digestibility of whey proteins isolate-lactose (WPI-Lac). The polyacrylamide gel electrophoresis (PAGE) pattern for alpha-lactalbumin of WPI at 60 min showed no detectable bands, while the alpha-lactalbumin of the WPI-Lac was completely digested after 5 min of gastric digestion. The beta-lactoglobulin of the WPI-Lac was found to be similar to the beta-lactoglobulin of the WPI, being insignificant at pH 3.0. The alpha-lactalbumin of the WPI decreased after 100 min of duodenal digestion at pH 6.5, and the WPI-Lac was completely digested after 60 min. The peptides were identified as ~2 kilodalton (kDa) in conjugated protein, which indicated that the level of degradation of the protein was high, due to the hydrolysis progress. The conjugated protein increased the responsiveness to digestive proteolysis, potentially leading to the release of immunogenic protein by lactose, and to the creation of hypoallergenic protein.
Collapse
Affiliation(s)
- Sarizan Sabari
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Norliza Julmohammad
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Haque Akanda Md Jahurul
- Department of Agriculture, School of Agriculture, University of Arkansas, 1200 North University Dr., M/S 4913, Pine Bluff, AR 71601, USA
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Noorakmar Ab. Wahab
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
2
|
Benbow NL, Rozenberga L, McQuillan AJ, Krasowska M, Beattie DA. ATR FTIR Study of the Interaction of TiO 2 Nanoparticle Films with β-Lactoglobulin and Bile Salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13278-13290. [PMID: 34731567 DOI: 10.1021/acs.langmuir.1c01830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The technique of in situ particle film attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) has been used to probe the adsorption and coadsorption (sequential) of a common food protein (β-lactoglobulin, BLG) and two representative bile salts (taurocholic acid and glycocholic acid, abbreviated as TCA and GCA) onto the surface of titanium dioxide (TiO2) nanoparticles. Evaluating of binding interactions between commonly used (historically now, in some countries) food additives and food components, as well as the body's own digestion chemicals, is a critical step in understanding the role of colloidal phenomena in digestion and bioavailability. TCA is found to adsorb onto TiO2 but without any significant ability to be retained when it is not present in the aqueous phase. GCA is also found to adsorb via two distinct binding mechanisms, with one type of adsorbed species being resistant to removal. BLG adsorbs, is irreversibly bound, and has altered conformation when adsorbed at pH 2 (stomach conditions) to the conformation when adsorbed at pH 6.5 (small intestine conditions). This altered conformation is not interface-dependent and is mirrored in the solution spectra of BLG. Sequential coadsorption studies indicate that TCA and GCA adsorb onto TiO2 nanoparticle surfaces and display similar degrees of reversibility and binding in the presence or absence of preadsorbed BLG.
Collapse
Affiliation(s)
- N L Benbow
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - L Rozenberga
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - A James McQuillan
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, New Zealand
| | - M Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - D A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
3
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
4
|
Li N, Etzel MR. Hydrolysis of Whey Protein-Dextran Glycates Made Using the Maillard Reaction. Foods 2019; 8:foods8120686. [PMID: 31847495 PMCID: PMC6963623 DOI: 10.3390/foods8120686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Protein-polysaccharide glycates are food ingredients that use the Maillard reaction to form a Schiff base linkage between the carbonyl of a polysaccharide and the free amino moiety of a protein. Glycates are excellent emulsification, foaming, and gelling agents in foods and improve protein solubility and heat stability. The present work examined if glycates dissociate by hydrolysis, returning to free un-glycated protein and dextran due to the reversibility of the Schiff base linkage. Hydrolysis of glycates made from whey protein isolate and dextran was measured versus time and temperature, allowing determination of the rate constants and equilibrium constants for glycate hydrolysis. Glycates underwent hydrolysis when placed into aqueous solutions at common food processing temperatures. For example, during hot food storage (60 °C), equilibrium fractional hydrolysis was 44%, whereas at ambient temperature (22 °C), it was 8%. The present work aims to increase the successful use of glycates in new foods by knowing what foods and conditions avoid glycate hydrolysis.
Collapse
|
5
|
Xu L, Gong Y, Gern JE, Lucey JA. Influence of whey protein hydrolysis in combination with dextran glycation on immunoglobulin E binding capacity with blood sera obtained from patients with a cow milk protein allergy. J Dairy Sci 2019; 103:1141-1150. [PMID: 31785876 DOI: 10.3168/jds.2019-17187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Food protein allergies are a major global concern. Hydrolysis of food proteins reduces their allergenicity, but another novel approach is the covalent attachment of polysaccharides to proteins via the Maillard reaction (i.e., glycation), which blocks some IgE binding epitopes on the protein allergen. We wanted to examine whether enzymatic hydrolysis, combined with glycation, could further reduce IgE binding for people with a cow milk protein allergy. Whey protein isolate (WPI) was hydrolyzed by immobilized trypsin and chymotrypsin to degree of hydrolysis (DH) values of 17 to 27%. Immobilized enzymes were used to avoid heat-treating the hydrolysate (to inactivate the enzymes, because heating could also affect the IgE binding ability of the protein). The resultant whey protein isolate hydrolysates (WPIH) were then glycated with 10-kDa dextran (DX) in aqueous solutions held at 62°C for 24 h. We analyzed the molar mass (MW) of WPIH samples and their corresponding glycates (WPIH-DX) using size-exclusion chromatography with multi-angle laser light scattering. We obtained blood sera from 8 patients who had been diagnosed with a cow milk protein allergy, and we used a composite serum for IgE binding analysis. The average MW values of samples WPIH-1 to WPIH-3 decreased from 11.15, 9.46, and 7.57 kDa with increasing DH values of 18.7, 22.5, and 27.1%. Glycation significantly reduced the high bitterness of the WPIH samples, as assessed by a trained sensory panel. The WPIH-DX glycates had significantly reduced WPI-specific IgE binding capacity compared to WPI or unglycated WPIH; we found an almost 99% reduction in IgE binding for the WPIH-DX glycate made from WPIH with a DH value of 27.1%. Hydrolysis of WPI followed by glycation with DX via the Maillard reaction significantly decreased the allergenicity of whey proteins.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science, University of Wisconsin-Madison, 53706
| | - Yuansheng Gong
- Department of Food Science, University of Wisconsin-Madison, 53706
| | - James E Gern
- School of Medicine and Public Health, University of Wisconsin-Madison, 53706
| | - John A Lucey
- Center for Dairy Research, University of Wisconsin-Madison, 53706.
| |
Collapse
|
6
|
Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep 2017; 7:14312. [PMID: 29085002 PMCID: PMC5662621 DOI: 10.1038/s41598-017-14707-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
The introduction of different nutrient and energy sources during weaning leads to significant changes in the infant gut microbiota. We used an in vitro infant digestive and gut microbiota model system to investigate the effect of four commercially available cereal products based on either wheat, sorghum, rice or oats, on the gut microbiota of six infants. Our results indicated cereal additions induced numerous changes in the gut microbiota composition. The relative abundance of bacterial families associated with fibre degradation, Bacteroidaceae, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Ruminococcaceae and Veillonellaceae increased, whilst the abundance of Enterobacteriaceae decreased with cereal additions. Corresponding changes in the production of SCFAs showed higher concentrations of acetate following all cereal additions, whilst, propionate and butyrate varied between specific cereal additions. These cereal-specific variations in the concentrations of SCFAs showed a moderate correlation with the relative abundance of potential SCFA-producing bacterial families. Overall, our results demonstrated clear shifts in the abundance of bacterial groups associated with weaning and an increase in the production of SCFAs following cereal additions.
Collapse
|
7
|
Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
O'Mahony JA, Drapala KP, Mulcahy EM, Mulvihill DM. Controlled glycation of milk proteins and peptides: Functional properties. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Impact of α-lactalbumin:β-lactoglobulin ratio on the heat stability of model infant milk formula protein systems. Food Chem 2016; 194:184-90. [DOI: 10.1016/j.foodchem.2015.07.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 11/19/2022]
|
10
|
Mulcahy EM, Mulvihill DM, O'Mahony JA. Physicochemical properties of whey protein conjugated with starch hydrolysis products of different dextrose equivalent values. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
A comprehensive review on in vitro digestion of infant formula. Food Res Int 2015; 76:373-386. [DOI: 10.1016/j.foodres.2015.07.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
|
12
|
Coelho RMD, Araújo ADA, Fontes CPML, da Silva ARA, da Costa JMC, Rodrigues S. Powder lemon juice containing oligosaccharides obtained by dextransucrase acceptor reaction synthesis and dehydrated in sprouted bed. Journal of Food Science and Technology 2015; 52:5961-7. [PMID: 26345014 DOI: 10.1007/s13197-014-1635-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/11/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Oligosaccharides can be synthesized using the sugars present in the fruit juices through the dextransucrase acceptor reaction. In the present work, the effect of reducing sugar and sucrose concentration on oligosaccharide formation in lemon juice was evaluated through response surface methodology. The oligosaccharide formation in lemon juice was favored at high concentrations of sucrose (75 g/L) and reducing sugar (75 g/L). At this synthesis conditions, an oligosaccharide concentration of 94.81 g/L was obtained with a conversion of 63.21% of the initial sugars into the target product. Oligosaccharides with degree of polymerization up to 11 were obtained. The lemon juice was dehydrated in spouted bed using maltodextrin as drying adjuvant. The powder obtained at 60°C with 20 % maltodextrin presented low moisture (2.24 %), low water activity (Aw = 0.18) and the lowest reconstitution time (~46 s). The results showed that lemon juice is suitable for oligosaccharides enzyme synthesis and can be dehydrated in spouted bed.
Collapse
Affiliation(s)
- Raquel Macedo Dantas Coelho
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| | - Antônia Daiana Andrade Araújo
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| | - Cláudia Patrícia Mourão Lima Fontes
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| | - Ana Raquel Araujo da Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| | - José Maria Correia da Costa
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| | - Sueli Rodrigues
- Departamento de Tecnologia de Alimentos, Universidade Federal do Ceará, Centro de Ciências Agrárias, Campus do Pici, Bloco 851, CEP: 60021970 Fortaleza Ceara, Brazil
| |
Collapse
|