1
|
Castilla-Casadiego DA, Pinzon-Herrera L, Perez-Perez M, Quiñones-Colón BA, Suleiman D, Almodovar J. Simultaneous characterization of physical, chemical, and thermal properties of polymeric multilayers using infrared spectroscopic ellipsometry. Colloids Surf A Physicochem Eng Asp 2018; 553:155-168. [PMID: 29988974 DOI: 10.1016/j.colsurfa.2018.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, multilayered films of polyethylenimine/poly (sodium-p-styrene sulfonate) (PEI)/(PSS) and type I collagen/heparin sodium (COL)/(HEP) were fabricated using the layer-by-layer technique, and fully characterized using Infrared Variable Angle Spectroscopic Ellipsometry (IRVASE) to simultaneously analyze the chemistry, thickness, and roughness of the multilayers with respect to changes in pH of the washing solution, and changes in temperature. Film topography and Young's modulus were obtained by atomic force microscopy (AFM) and nanoindentation. Our results show that with IRVASE it is possible to analyze the thickness of the multilayers prepared using a washing solution of pH 5, obtaining values of 71.7 nm and 40.3 nm for three bilayers of PEI/PSS and COL/HEP, respectively. Film roughness varies between multilayer systems, obtaining values of 37.76 nm for three bilayers of PEI/PSS and 33.58 nm for three bilayers of COL/HEP. Increasing the pH of the washing solution for PEI/PSS yielded thinner films that were less susceptible to thermal induced changes in film chemistry in the range of 25 - 150 °C. PEI/PSS films decreased in thickness with increasing temperature up to 75 °C, whereas above 75 °C film thickness increased. Through IRVASE, a transition temperature for the PEI/PSS multilayers was observed at 75 °C. Temperatures above 37 °C drastically alter the chemistry and the thickness of the COL/HEP multilayers indicating a possible degradation of the polymers. We obtained, through nanoindentation, a Young's modulus of 15000 kPa and 9000 kPa for 12 bilayers of PEI/PSS and COL/HEP, respectively. These results demonstrate that, using IRVASE, we can simultaneously evaluate the physical, chemical, and thermal properties of synthetic and natural multilayered polymeric films.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Luis Pinzon-Herrera
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Maritza Perez-Perez
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Beatriz A Quiñones-Colón
- Department of Biology, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - David Suleiman
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, PR 00681-9000, USA
| |
Collapse
|
2
|
Vikulina AS, Anissimov YG, Singh P, Prokopović VZ, Uhlig K, Jaeger MS, von Klitzing R, Duschl C, Volodkin D. Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point. Phys Chem Chem Phys 2016; 18:7866-74. [PMID: 26911320 DOI: 10.1039/c6cp00345a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effect of temperature on the build-up of exponentially growing polyelectrolyte multilayer films was investigated. It aims at understanding the multilayer growth mechanism as crucially important for the fabrication of tailor-made multilayer films. Model poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers were assembled in the temperature range of 25-85 °C by layer-by-layer deposition using a dipping method. The film growth switches from the exponential to the linear regime at the transition point as a result of limited polymer diffusion into the film. With the increase of the build-up temperature the film growth rate is enhanced in both regimes; the position of the transition point shifts to a higher number of deposition steps confirming the diffusion-mediated growth mechanism. Not only the faster polymer diffusion into the film but also more porous/permeable film structure are responsible for faster film growth at higher preparation temperature. The latter mechanism is assumed from analysis of the film growth rate upon switching of the preparation temperature during the film growth. Interestingly, the as-prepared films are equilibrated and remain intact (no swelling or shrinking) during temperature variation in the range of 25-45 °C. The average activation energy for complexation between PLL and HA in the multilayers calculated from the Arrhenius plot has been found to be about 0.3 kJ mol(-1) for monomers of PLL. Finally, the following processes known to be dependent on temperature are discussed with respect to the multilayer growth: (i) polymer diffusion, (ii) polymer conformational changes, and (iii) inter-polymer interactions.
Collapse
Affiliation(s)
- Anna S Vikulina
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK. and Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany. and The Faculty of Fundamental Medicine, Laboratory of Medical Biophysics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Yuri G Anissimov
- School of Natural Sciences and Micro and Nano Technology Centre, Griffith University, Australia.
| | - Prateek Singh
- Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany. and Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Oulu, PO Box 5000, 90014 Oulu, Finland.
| | | | - Katja Uhlig
- Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany.
| | - Magnus S Jaeger
- Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany. and Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Regine von Klitzing
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, D-10623 Berlin, Germany.
| | - Claus Duschl
- Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK. and Fraunhofer IZI-BB, Am Mühlenberg 13, 14424, Potsdam, Germany.
| |
Collapse
|
5
|
Lee J, Choi J, Park JH, Kim MH, Hong D, Cho H, Yang SH, Choi IS. Cytoprotective Silica Coating of Individual Mammalian Cells through Bioinspired Silicification. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Park JH, Choi IS, Jung YH. Formation of DNA-Silica Complexes with Deoxyguanosine Oligonucleotides. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Yang SH, Hong D, Lee J, Ko EH, Choi IS. Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:178-186. [PMID: 23124994 DOI: 10.1002/smll.201202174] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Indexed: 06/01/2023]
Abstract
Cells are encapsulated individually within thin and tough shells in a cytocompatible way, by mimicking the structure of bacterial endospores that survive under hostile conditions. The 3D 'cell-in-shell' structures-coined as 'artificial spores'-enable modulation and control over cellular metabolism, such as control of cell division, resistance to external stresses, and surface-functionalizability, providing a useful platform for applications, including cell-based sensors, cell therapy, regenerative medicine, as well as for fundamental studies on cellular metabolism at the single-cell level and cell-to-cell communications. This Concept focuses on chemical approaches to single-cell encapsulation with artificial shells for creating artificial spores, including cross-linked layer-by-layer assembly, bioinspired mineralization, and mussel-inspired polymerization. The current status and future prospects of this emerging field are also discussed.
Collapse
Affiliation(s)
- Sung Ho Yang
- Department of Chemistry Education, Korea National University of Education, Chungbuk 363-791, Korea
| | | | | | | | | |
Collapse
|