1
|
Mohtar NS, Abdul Rahman MB, Mustafa S, Mohamad Ali MS, Raja Abd. Rahman RNZ. Spray-dried immobilized lipase from Geobacillus sp. strain ARM in sago. PeerJ 2019; 7:e6880. [PMID: 31183251 PMCID: PMC6546084 DOI: 10.7717/peerj.6880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/20/2022] Open
Abstract
Sago starch is traditionally used as food especially in Southeast Asia. Generally, sago is safe for consumption, biodegradable, easily available and inexpensive. Therefore, this research was done to expand the potential of sago by using it as a support for enzyme immobilization. In this study, ARM lipase, which was isolated from Geobacillus sp. strain ARM, was overexpressed in Escherichia coli system and then purified using affinity chromatography. The specific activity of the pure enzyme was 650 U/mg, increased 7 folds from the cell lysate. The purified enzyme was immobilized in gelatinized sago and spray-dried by entrapment technique in order to enhance the enzyme operational stability for handling at high temperature and also for storage. The morphology of the gelatinized sago and immobilized enzyme was studied by scanning electron microscopy. The results showed that the spray-dried gelatinized sago was shrunken and became irregular in structure as compared to untreated sago powder. The surface areas and porosities of spray-dried gelatinized sago with and without the enzyme were analyzed using BET and BJH method and have shown an increase in surface area and decrease in pore size. The immobilized ARM lipase showed good performance at 60-80 °C, with a half-life of 4 h and in a pH range 6-9. The immobilized enzyme could be stored at 10 °C with the half-life for 9 months. Collectively, the spray-dried immobilized lipase shows promising capability for industrial uses, especially in food processing.
Collapse
Affiliation(s)
- Nur Syazwani Mohtar
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme & Microbial Technology Research Centre (EMTech), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Zhu Q, Zhuang W, Niu H, Ge L, Villacorta Hernandez B, Wu J, Wang K, Liu D, Chen Y, Zhu C, Ying H. Affinity induced immobilization of adenylate cyclase from the crude cell lysate for ATP conversion. Colloids Surf B Biointerfaces 2018; 164:155-164. [PMID: 29413592 DOI: 10.1016/j.colsurfb.2018.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/19/2017] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
The development of an orientation immobilization technique via affinity between polyhistidine tags and metal ions aims at maintaining biocatalytic activity of the enzymes. In this work, to tackle the issue of the immobilization of adenylate cyclase (AC), a simple and effective approach of synthesizing iminodiacetic acid (IDA)-Ni2+ particles was applied for simultaneously purifying and immobilizing his-tagged AC. We chose agarose particles as carriers, and then decorated them with IDA, leading to the formation of a coordination combination of Ni2+. The porous carriers with a large pore size of 50 nm and a specific surface area of 45.8 m2/g exhibited favorable enzymatic activity and loading capacity. The optimal pH of the immobilized enzyme increased from 8.0 to 9.0 and the optimal temperature increased from 30 °C to 35 °C, compared to the free AC. Moreover, the immobilized AC retained a residual activity of approximately 80% after storing it at 25 °C for 48 h, whereas only 40% of the activity was left in the free AC at the same conditions. Maximum yield of cyclic adenosine-3', 5'- monophosphate (cAMP) reached up to the summit of the reaction. The immobilized AC by affinity adsorption will provide a promising route for the industrial production of cAMP.
Collapse
Affiliation(s)
- Qianqian Zhu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Huanqing Niu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | | | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
| | - Kai Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, No. 79 Chating East Street, Nanjing 210017, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
| | - Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
3
|
Shin MK, Kang B, Yoon NK, Kim MH, Ki J, Han S, Ahn JO, Haam S. Synthesis of Fe 3O 4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents. NANOTECHNOLOGY 2016; 27:495705. [PMID: 27831938 DOI: 10.1088/0957-4484/27/49/495705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated 'sea-urchin' shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 μg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.
Collapse
Affiliation(s)
- Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Longo GS, de la Cruz MO, Szleifer I. Equilibrium adsorption of hexahistidine on pH-responsive hydrogel nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15335-15344. [PMID: 25434993 DOI: 10.1021/la5040382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate on the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a nonmonotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly, increasing the degree of charge of the residues as compared to the bulk solution. Such a shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins.
Collapse
Affiliation(s)
- Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET , La Plata, Argentina
| | | | | |
Collapse
|
8
|
San BH, Ha EJ, Paik HJ, Kim KK. Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst. NANOSCALE 2014; 6:6009-6017. [PMID: 24777448 DOI: 10.1039/c4nr00407h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.
Collapse
Affiliation(s)
- Boi Hoa San
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | |
Collapse
|