1
|
Chen Z, Yang J, Huang D, Wang S, Jiang K, Sun W, Chen Z, Cao Z, Ren Y, Wang Q, Liu H, Zhang X, Sun X. Adsorption behavior of aniline pollutant on polystyrene microplastics. CHEMOSPHERE 2023; 323:138187. [PMID: 36806808 DOI: 10.1016/j.chemosphere.2023.138187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Microplastic contamination is ubiquitous in aquatic environments. As global plastic production increases, the abundance of microplastic contaminants released into the environment has also continued to soar. The hydrophobic surfaces of plastic particles can adsorb a variety of chemical pollutants, and could therefore facilitate toxin accumulation through the food chain. In this study, the adsorption behavior of aniline, a priority environmental pollutant from industrial production, on the surface of polystyrene microplastics (mPS) was investigated. The results showed that the maximum adsorption capacity of mPS was 0.060 mg/g. Adsorption equilibrium was reached after 24 h, and the pseudo-second-order model was employed to explain the adsorption kinetics of aniline on the mPS particles. The Freundlich models could describe the adsorption isotherms. The potential adsorption mechanisms may include π-π interactions and hydrophobic interactions. pH, ionic strength, and ambient temperature of the solution played important roles in the adsorption process.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jinchan Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Shuni Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Jiang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Weimin Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhihua Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Youhua Ren
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoxu Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Wang Q, Li L, Tang Q, Liu J, Wang Y, Wang J, Kipper MJ, Xie H, Belfiore LA, Tang J. Ligand-Tuned Multi-Color Luminescence of Single Aluminum (III) Ion Atomic Centers and Their Selective Sensitivity to Different Metal Ions. MATERIALS 2022; 15:ma15155199. [PMID: 35955134 PMCID: PMC9370060 DOI: 10.3390/ma15155199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 02/05/2023]
Abstract
Achieving multi-color luminescence with a single atomic center in transition metal complexes is a challenge. In this work, luminescent materials with tunable emission properties were realized by complexation between aluminum (III) ions with the ligands 3-hydroxyflavone (3-HF) and 5,7-dichloro-8-hydroxyquinoline (DCHQ). Aluminum (III) complexes with a single ligand emitted blue from 3-HF and green from DCHQ. High quantum yields (QYs) of 29.42% and 37.00% were also obtained, respectively. DFT calculations revealed details of the photophysical properties of the complexes. Correspondingly, cyan light emission was obtained if these two complexes were mixed together, from which the emission wavelength was located at 470 nm and the QY was 20.52%, under 290 nm excitation. More importantly, the cyan light emitted by the mixtures had selective sensitivity to different metal ions, resulting in either quenching the fluorescence (in the case of Fe3+) or enhancing the fluorescence (in the case of In3+). The fluorescence enhancement effect of In3+ on metal complexes has not been previously reported, neither for transition metal nor lanthanide ions. The linear quenching behavior of Fe3+ functions in the 50–700 μM concentration range, and the linear enhancement behavior of In3+ is demonstrated in the 300–800 mM concentration range.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Longlong Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Jiuxing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen’er West Road, Xihu District, Hangzhou 310003, China;
| | - Laurence A. Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.W.); (L.L.); (Q.T.); (J.L.); (Y.W.); (J.W.); (L.A.B.)
- Correspondence: ; Tel.: +86-137-9180-1659
| |
Collapse
|